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# NCAR’s Data Assimilation Research Section - DAReS

The NCAR Data Assimilation Initiative was founded to create and to then
lead a research community for data assimilation where individuals benefit
from sharing ideas, methodologies, and software tools as well as access to
a data assimilation testbed. NCAR has a large number of researchers for
whom data assimilation is an essential part of their ongoing or planned
research. New developments in theoretical data assimilation and in software
engineering are making collaborations between data assimilation experts,
modelers, observational specialists and statisticians easier and more
productive than was possible in the past.
The maturation of the Initiative resulted in the
Data Assimilation Research Section (DAReS).
The primary goal of DAReS is to continue to advance the theory and
practice of ensemble data assimilation.
Also, DAReS accelerates the progress of many other NCAR
projects by providing a centralized data assimilation expertise which can
be coordinated with existing observational and modeling expertise.

<center>
<a href=”../images/DAReS_circa_2017.jpg”><img src=”../images/DAReS_circa_2017.jpg” height=”300” alt=”group photo” /></a>

from left to right:
<a href=”http://staff.ucar.edu/users/raeder”>Kevin Raeder</a>,
<a href=”http://staff.ucar.edu/users/romine”>Glen Romine</a>,
<a href=”http://staff.ucar.edu/users/jla”>Jeff Anderson</a>,<a href=”http://staff.ucar.edu/users/nancy”>Nancy Collins</a>,
<a href=”http://staff.ucar.edu/users/thoar,”>Tim Hoar</a>
Jonathan Hendricks, and
<a href=”http://staff.ucar.edu/users/gharamti”>Moha El Gharamti</a>.This is an old photo and does not show all of us!
</center>

<span id=”contact” class=”anchor”></span> [](#contact)

Our small group is comprised of experts in software design,
algorithm development, large-model implementation and execution,
observations and observation operators, and hardware/software portability.
We have given many presentations on DART - our software facility for
ensemble data assimilation, and have held several workshops for young
researchers interested in DA.

<!– FIXME advertise the AMS 2020 workshop –>

Our central email address is dart@ucar.edu, which will hit
‘everyone’ and find its way to the best person.
The categories that follow are not set in stone, everyone has some
expertise in all areas.

<span id=”regularstaff” class=”anchor”></span> [](#regularstaff)


	DAReS Staff (alphabetically)
	
	[Jeff Anderson](http://staff.ucar.edu/users/jla), Scientist, algorithms


	[Nancy Collins](http://staff.ucar.edu/users/nancy), Software Engineer, platforms/mpi


	[Moha El Gharamti](http://staff.ucar.edu/users/gharamti), Scientist, algorithms


	[Tim Hoar](http://staff.ucar.edu/users/thoar), Associate Scientist, diagnostics, documentation


	[Ben Johnson](http://staff.ucar.edu/users/johnsonb), Associate Scientist


	[Kevin Raeder](http://staff.ucar.edu/users/raeder), Associate Scientist, CAM


	[Glen Romine](http://staff.ucar.edu/users/romine), Project Scientist, WRF


	[Jeff Steward](http://staff.ucar.edu/users/jsteward), Software Engineer








<span id=”supportstaff” class=”anchor”></span> [](#supportstaff)


	DAReS Support (alphabetically)
	
	[Elizabeth Chapin](http://staff.ucar.edu/users/echapin), Senior Business Analyst


	[Lisa Larson](http://staff.ucar.edu/users/larsonl), Administrative Assistant


	[Taysia Peterson](http://staff.ucar.edu/users/taysiana), Administrative Assistant


	[Mary Pronk](http://staff.ucar.edu/users/pronk), Administrator








<span id=”shipping” class=”anchor”></span> [](#shipping)

### Shipping information:


postal address           | “overnight” deliveries   | electronic methods   |

:———————– | :———————– | :——————- |

Lisa Larson              | Lisa Larson              | larsonl @ ucar . edu |

NCAR                     | NCAR                     | 303 497 185          |

P.O. Box 3000            | 1850 Table Mesa Dr.      | 303 497 2483 (FAX)   |

Boulder, CO 80307-3000   | Boulder, CO 80305        |                      |
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# CESM+DART setup

[SET-UP](#CESM%20MODES) / [CESM+DART MODELS](#CESM+DART%20MODELS) /
[SET-UP](#SETUP) / [INITIAL ENSEMBLE](#INITIALFILES) /
[OUTPUT DIRECTORY](#OUTPUTDIRECTORY) / [HINTS](#HINTS) /
[SPACE](#SPACE) / [FAQ](#cesm_dart_faq)
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## CESM and DART Setup Overview

If you found your way to this file without reading more basic DART help
files, please read those first. $DART/README.md is a good place to find
pointers to those files. This document gives specific help in setting up
a CESM+DART assimilation for the first time. Unless you just came from
there, also see the ../{your_model(s)}/model_mod.html documentation
about the code-level interfaces and namelist values.

#### CESM context

Most other models are either called by DART (low order models), or are
run by DART via a shell script command (e.g. WRF). In contrast, CESM
runs its forecast, and then calls DART to do the assimilation. The
result is that assimilation set-up scripts for CESM components focus on
modifying the set-up and build of CESM to accommodate DART’s needs, such
as multi-instance forecasts, stopping at the assimilation times to run
filter, and restarting with the updated model state. The amount of
modification of CESM depends on which version of CESM is being used.
Later versions require fewer changes because CESM has accommodated more
of DART’s needs with each CESM release. This release of DART focuses on
selected CESM versions from 1_2_1 onward, through CESM2 (June, 2017)
and versions to be added later. Using this DART with other CESM versions
will quite possibly fail.

Since the ability to use DART has not been completely integrated into
CESM testing, it is necessary to use some CESM fortran subroutines which
have been modified for use with DART. These must be provided to CESM
through the SourceMods mechanism. SourceMods for selected versions of
CESM are available from the DART website. They can often be used as a
template for making a SourceMods for a different CESM version. If you
have other CESM modifications, they must be merged with the DART
modifications.

#### CESM2

CESM2 has several helpful improvements, from DART’s perspective.



	Reduced number of subroutines in DART’s SourceMods.


	“Multi-instance” capability enables the ensemble forecasts DART
needs.


	Cycling capability, enabling multiple assimilation cycles in a
single job, which reduces the frequency of waiting in the queue.


	Removal of the short term archiver from the run script so that the
MPI run doesn’t need to idle while the single task archiver runs.
This significantly reduces the core hours required.


	CESM’s translation of the short term archiver to python, and control
of it to an xml file ($caseroot/env_archive.xml), so that DART
modifications to the short term archiver are more straight-forward.


	The creation of a new component class, “External Statistical
Processing” (“esp”), of which DART is the first instance, integrates
DART more fully into the CESM development, testing, and running
environment. This is the same as the atm class, which has CAM as an
instance. This will help make DART available in the most recent
tagged CESM versions which have the most recent CESM component
versions.







These have been exploited most fully in the CAM interfaces to DART,
since the other components’ interfaces still use older CESMs. The
cam-fv/shell_scripts can be used as a template for updating other
models’ scripting. The multi-cycling capability, with the short- and
long-term archivers running as separate jobs at the end, results in
assimilation jobs which rapidly fill the scratch space. Cam-fv’s and
POP’s assimilate.csh scripts have code to remove older and unneeded CESM
restart file sets during the run. All of DART’s output and user
selected, restart file sets are preserved.

DART’s Manhattan release includes the change to hard-wired input and
output filenames in filter. Cam-fv’s assimilate.csh renames these files
into the CESM file format:
$case.$component{_$instance}.$filetype.$date.nc.
DART’s hard-wired names are used as new filetypes, just like CESM’s
existing “r”, “h0”, etc. For example, preassim_mean.nc from a CAM
assimilation named “Test0” will be renamed
Test0.cam.preassim_mean.2013-03-14-21600.nc
The obs_seq files remain an exception to this renaming, since they are
not in NetCDF format (yet).

<span id=”CESM MODES”></span>

## CESM Component Combinations

CESM can be configured with many combinations of its components (CAM,
CLM, POP, CICE, …) some of which may be ‘data’ components, which
merely read in data from some external source and pass it to the other,
active, components to use. The components influence each other only
through the coupler. There are several modes of assimilating
observations in this context.

#### Single-Component Assimilation

The first, and simplest, consists of assimilating relevant observations
into one active component. Most/all of the rest of the components are
‘data’. For example, observations of the oceans can be assimilated into
the POP model state, while the atmospheric forcing of the ocean comes
from CAM reanalysis files, and is not changed by the observations. A
variation of this is used by CAM assimilations. A CAM forecast usually
uses an active land component (CLM) as well as an active atmospheric
component. Atmospheric observations are assimilated only into the CAM
state, while the land state is modified only through its interactions
with CAM through the coupler. Each of these assimilations is handled by
one of $DART/models/{cam-fv, POP, clm, …} If you want to use an
unusual combination of active and data components, you may need to (work
with us to) modify the setup scripts.

<center>
<a href=”../images/science_nuggets/CAM_only.png”><img src=”../images/science_nuggets/CAM_only.png”


height=”300” alt=”CAM+DART flowchart” /></a>





	<a href=”../images/science_nuggets/POP_only.png”><img src=”../images/science_nuggets/POP_only.png”
	height=”300” alt=”CAM+POP flowchart” /></a>





</center>

—

#### Multi-Component Assimilation (aka “weakly coupled”)

<table>
<tr>
<td width=”30%”><a href=”../images/science_nuggets/multi-component.png”><img src=”../images/science_nuggets/multi-component.png” height=”200” alt=”Multi-component flowchart” /></a></td>
<td>
It’s also possible to assimilate observations into multiple active components,
but restricting the impact of observations to only “their own” component.
So in a “coupled” CESM with active CAM and POP, atmospheric observations change
only the CAM model state while oceanic observations change only the POP model
state. This mode uses multiple DART models; cam-fv and POP in this example to
make a filter for each model.
</td>
</tr>
</table>

—

#### Cross-Component Assimilation (aka “strongly coupled”)

<table>
<tr>
<td width=”30%”><a href=”../images/science_nuggets/cross-component.png”><img src=”../images/science_nuggets/cross-component.png” height=”200” alt=”cross-component flowchart” /></a></td>
<td>
Work is underway to enable the assimilation of all observations into
multiple active CESM components. So observations of the atmosphere
would directly change the POP state variables and vice versa.
Some unresolved issues include defining the “distance” between an
observation in the atmosphere and a grid point in the ocean
(for localization), and how frequently to assimilate in CAM versus
POP. This mode will use code in this models/CESM directory.
</td>
</tr>
</table>

[Go to cam-fv/model_mod page](../../models/cam-fv/model_mod.html)

<span id=”CESM+DART MODELS”></span><span></span>



## models/CESM components organization

~~~
SCRIPT                          NOTES


	$DART/models/cam-fv/        A ‘model’ for each CAM dynamical core (see note below this outline)
	model_mod.*                 The fortran interface between CAM-FV and DART
shell_scripts/


no_assimilate.csh,…     Independent_of_cesm_version
cesm1_5/


setup_hybrid,…        Dependent on CESM version





	cesm2_0/
	setup_hybrid,…        Dependent on CESM version










	$DART/models/POP/           A ‘model’ for each ocean model (MOM may be interfaced next)
	model_mod.*                 The fortran interface between CAM-FV and DART
shell_scripts/


no_assimilate.csh,…     Independent_of_cesm_version
cesm1_5/


setup_hybrid,…        Dependent on CESM version





	cesm2_0/
	setup_hybrid,…        Dependent on CESM version












~~~

For each CAM dynamical core “model”, e.g. “cam-fv”,  the scripts  in cesm#_# will handle:
- all CAM variants + vertical resolutions (dy-core is NOT part of this.):



	CAM5.5, CAM6, …


	WACCM4, WACCM6, WACCM-X…


	CAM-Chem,


	…








	-all horizontal resolutions of its dy-core:
	
	1.9x2.5, 0.9x1.25, …, for cam-fv


	ne30np4, ne0_CONUS,…, for cam-se
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## Assimilation Set-up Procedure

Here is a list of steps to set up an assimilation from scratch, except
that it assumes you have downloaded DART and learned how to use it with
low order models. Some of the steps can be skipped if you have a
suitable replacement, as noted.


	Decide which component(s) you want to use as the assimilating
model(s). (The rest of this example assumes that you’re building a
cam-fv assimilation.) Look in models/cam-fv/shell_scripts to see
which CESM versions are supported.


	CESM: locate that version on your system, or check it out from
http://www.cesm.ucar.edu/models/current.html


	Choose a start date for your assimilation. Choosing/creating the
initial ensemble is a complicated issue.



	It’s simpler for CAM assimilations. If you don’t have an initial
state and/or ensemble for this date, build a single instance of
CESM (Fxxxx compset for cam-fv) and run it from the default Jan
1 start date until 2-4 weeks before your start date. Be sure to
set the cam namelist variable inithist = ‘ENDOFRUN’ during the
last stage, so that CAM will write an “initial” file, which DART
needs.


	For ocean and land assimilations,which use an ensemble of data
atmospheres, creating usable initial ensemble is a different
process.









	Put the entire cam-fv restart file set (including the initial file)
where it won’t be scrubbed before you want to use it. Create a
pseudo-ensemble by linking files with instance numbers in them to
the restart file set (which has no instance number) using
CESM/shell_scripts/link_ens_to_single.csh


	Choose the options in $DART/mkmf/mkmf.template that are best for
your assimilation. These will not affect the CESM build, only
filter.


	In models/cam-fv/work/input.nml, be sure to include all of your
required obs_def_${platform}_mod.f90 file names in
preprocess_nml:input_files. It’s also useful to modify the rest of
input.nml to make it do what you want for the first assimilation
cycle. This input.nml will be copied to the $case_root directory
and used by assimilate.csh.


	Build the DART executables using quickbuild.csh.


	Follow the directions in
models/cam-fv/shell_scripts/cesm#_#/*setup_hybrid* to set up the
assimilation and build of CESM. We recommend a tiny ensemble to
start with, to more quickly test whether everything is in order.


	After convincing yourself that the CESM+DART framework is working
with no_assimilate.csh, activate the assimilation by changing
CESM’s `env_run.xml:DATA_ASSIMILATION_SCRIPT` to use
assimilate.csh.


	After the first forecast+assimilation cycle finishes correctly,
change the input.nml, env_run.xml and env_batch.xml to do
additional cycle(s) without the perturbation of the initial state,
and with using the just created restart files. You may also want to
turn on the st_archive program. Instructions are in setup_hybrid
and cam-fv/work/input.nml.


	Finally, build a new case with the full ensemble, activate the
assimilate.csh script and repeat the steps in step 10.




<span id=”INITIALFILES”></span>



## CAM Initial Ensembles

Strategies for generating an initial ensemble from which DART can
start.


	MINIMAL WORK; Get an ensemble of CAM/CLM/CICE/POP/… initial and
restart files from someone else (DART has a few dates for a few
model cores and resolutions
[here](http://www.image.ucar.edu/pub/DART/Obs_sets). This limits the
investigations you can undertake, but is the fastest and cheapest
way to start assimilating.


	MINIMAL CAM COMPUTING; an assimilation can be started from a single
CAM (+CLM[+CICE]) initial file. The single model state is randomly
perturbed to make as many ensemble members as are requested in the
ens_size variable in the filter_nml namelist. ~~Create a
filter_ic file from the CAM initial file (dart_to_cam.f90).~~
Create an obs_seq.out file which has a single observation with a
large observational error variance, valid at least a week after the
start date for the spin-up. This will make the ensemble advance long
enough to balance the fields, without being perturbed by the
assimilation of any observations.




~~~
&filter_nml


…
start_from_restart       = .false.,
restart_in_file_name     = “filter_ic”,
…




/
&model_nml


…
pert_names         = ‘T       ‘,’US      ‘,’VS      ‘
pert_sd           = 1.0d0,2.0d0,2.0d0
…





/

Note that start_from_restart is false (“don’t start from a
pre-existing *ensemble*”), but a restart file (filter_ic) is
still needed for filter to have something realistic to perturb.
pert_names specifies which fields will be perturbed. CAM field
names are used. pert_sd > 0 allows each point of the pert_names
fields of each ensemble member to be randomly perturbed with a
standard deviation of pert_sd. Other fields can be used, but
moisture variables are tricky because of their variation with height
by orders of magnitude. Regardless of which fields are specified,
the spin-up period will allow the fields to come into balance with
respect to the model, so the perturbations will propagate into all fields.


	FULL FUNCTION ENSEMBLE; In order to have, on hand, initial ensembles
of any practical size, for any date of the year, we recommend the
following. ~~Scripts for doing this are available in
…/DART/models/cam/make_ensemble. See the README there for more
details. They are not highly documented or elegent, but offer a
starting point.~~ Make 20 successive 1-year free CAM runs (MPI CAM
highly recommended, NO_LEAP calender), saving the initial files
every 5 days. ? ? Or 5 years, saving every day. Then pull together
all of the, e.g., Jan 6ths (00Z) into a 20 (5) member ensemble
(numbered 1…20(5)).

When you need an ensemble of, say 60 members for June 1 then
retrieve the 20 members from each of May 26, May 31, and June 5,
renumbering them 1,…,60. -->

<span id=”OUTPUTDIRECTORY”></span>







## Output Directory

CESM’s short term archiver (st_archive) is controlled by its
env_archive.xml. DART’s setup scripts modify that file to archive
DART output along with CESM’s.
~~(See the [list of RMA changes](../html/rma.html) for a description of
DART’s output).~~
DART’s output is archived in
$arch_dir/dart/{hist,rest,logs,…}, where arch_dir is defined in
setup_{hybrid,advanced}, hist contains all of the state space and
observation space output, and rest contains the inflation restart
files.

## Central directory

User Location of scripts and pass-through point for files during execution.
Typically named according defining characteristics of a *set* of
experiments; resolution, model, obs being assimilated, unique model
state variables, etc. -->

The cam-XX assimilate.csh scripts also make a copy of the obs_seq.final
files in a scratch space ($scratch/$case/Obs_seqs) which won’t be
removed by CESM’s long term archiver, if that is run.

<span id=”HINTS”></span>



## Helpful Hints

<span id=”SPACE”></span>



### Space Requirements

Space requirements (Gb per ensemble member) for several CAM resolutions.

There are, no doubt, things missing from these lists, so don’t struggle
too long before contacting dart’at’ucar.edu.

<span id=”cesm_dart_faq”></span>



### The CESM Climate Model and DART Frequently Asked Questions

> How does DART interact with CESM?

The CESM climate model comes with its own configuration, build, run, and
archive scripts already. The DART distribution supplies a ‘setup’ script
that calls the CESM scripts to build a new case, and then add a section
to the CESM run script so the DART code will be run after each CESM
model advance. The DART setup scripts are needed only when building a
new case. At run-time the CESM run scripts are used to start the job.
The CESM “multi-instance” capability is used to run multiple ensemble
members as part of a single job.

> I want to assimilate with one of the CESM models. Where do I start?

We use the CESM framework to execute the CESM model components, and then
call the DART assimilation via an addition to the standard CESM run
script. We provide a set of setup scripts in our
DART/models/XXX/shell_scripts directories, where XXX is currently
one of: cam, POP, clm, or CESM. Start with the shell script, set
the options you want there, and then run the script. It calls the
standard CESM ‘build_case’ scripts, and stages the files that will be
needed for assimilation. See comments in the appropriate setup script
for more details of how to
proceed.

> I’m getting a mysterious run-time error from CESM about box rearranging.

Certain versions of CESM (including CESM1_5_alpha02d) won’t run with 3
instances (ensemble members). We are unsure what other instance sizes
fail. The error message is about box rearranging from
box_rearrange.F90. This is a problem in CESM and should be reported via
their Bugzilla process. 4 instances works
fine.

> I’m getting ‘update_reg_list’ errors trying to assimilate with POP.

If you are trying to assimilate with POP and you get this error:

~~~
ERROR FROM:
 routine: update_reg_list
 message: max_reg_list_num ( 80) is too small … increase
~~~

The most likely cause is that the POP-DART model interface code is
trying to read the POP grid information and the default file is in the
wrong kind of binary for this system (big-endian and not little-endian).
At this point the easiest solution is to rebuild the DART executables
with a flag to swap the bytes as it is reading binary files. For the
Intel compiler, see the comments at the top of the mkmf file about
adding ‘-convert bigendian’ to the FFLAGS line.

> I’m getting asked to confirm removing files when CESM is built.

If you have the rm (remove) command aliased to require you to confirm
removing files, the CESM build process will stop and wait for you to
confirm removing the files. You should reply yes when prompted.

If you have questions about the DART setup scripts and how they interact
with CESM it is a good idea to set up a standalone CESM case without any
DART scripts or commands to be sure you have a good CESM environment
before trying to add DART. The DART setup script uses CESM scripts and
commands and cannot change how those scripts behave in your environment.

> I’m getting module errors when CESM is built.

DART only uses the plain netCDF libraries for I/O. CESM can be
configured to use several versions of netCDF including PIO, parallel
netCDF, and plain netCDF. Be sure you have the correct modules loaded
before you build CESM. If there are questions, try setting up a CESM
case without DART and resolve any build errors or warnings there before
using the DART scripts.

[[top](#)]
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# Useful Software

The following free open-source tools have proven to be very useful:


	[ncview](http://meteora.ucsd.edu/~pierce/ncview_home_page.html): a
great visual browser for netCDF files.


	[Panoply](http://www.giss.nasa.gov/tools/panoply): another visual
browser for netCDF, HDF, and GRIB files with many options for map
projections and data slicing.


	[the netCDF Operators (NCO)](http://nco.sourceforge.net/): tools to
perform operations on netCDF files like concatenating, differencing,
averaging, etc.


	[An MPI environment](http://en.wikipedia.org/wiki/Message_Passing_Interface#Overview):
to run larger jobs in parallel. DART can be used without MPI,
especially the low order models where the memory use is small. The
larger models often require MPI so that filter can be run as a
parallel job, both for speed and memory size reasons. Common options
are [OpenMPI](http://www.open-mpi.org/) or
[MPICH](http://www.mpich.org/). See the DART MPI introduction in
[mpi_intro.html](dart_mpi.html).


	[Observation Processing And Wind Synthesis (OPAWS)](http://code.google.com/p/opaws/):
OPAWS can process NCAR
Dorade (sweep) and NCAR EOL Foray (netcdf) radar data. It analyzes
(grids) data in either two-dimensions (on the conical surface of
each sweep) or three-dimensions (Cartesian). Analyses are output in
netcdf, Vis5d, and/or DART (Data Assimilation Research Testbed)
formats.


	Some DART users have contributed scripts using the






	[NCAR Command Language (NCL)](http://www.ncl.ucar.edu/Document/Manuals/Getting_Started/introduction.shtml)
	for computation and plotting.








The following licensed (commercial) tool has proven very useful:


	[MATLAB®](http://www.mathworks.com/products/matlab/):
An interactive and programming language for computation and visualization.
We supply our diagnostic and plotting routines as MATLAB® scripts.




Free alternatives to MATLAB® (for which we unfortunately do not have the
resources to support, but would happily accept user contributions) include:
-  [Octave](http://www.gnu.org/software/octave)
-  [SciPy](http://www.scipy.org/) plus
-  [matplotlib](http://matplotlib.org/)
-  The [R](http://www.r-project.org/) programming language has


similiar functionality but a different enough syntax that the
diagnostic and plotting routines we supply which work with
MATLAB® are unlikely to be easy to port.




[[top](#)]



# DART platforms/compilers/batch systems

We work to keep the DART code highly portable. We avoid
compiler-specific constructs, require no system-specific functions, and
try as much as possible to be easy to build on new platforms.

DART has been compiled and run on Apple laptops and workstations, Linux
clusters small and large, SGI Altix systems, IBM Power systems, IBM
Intel systems, Cray systems.

DART has been compiled with compilers from Intel, PGI, Cray, GNU, IBM,
Pathscale.

MPI versions of DART have run under batch systems including LSF, PBS,
Moab/Torque, and Sun Grid Engine.

<span id=”platform_notes” class=”anchor”></span>
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## Platform-specific notes.

Most of the platform-specific notes are in the appropriate
mkmf.template.xxxx.yyyy file. There are very few situations that
require making additional changes.

### gfortran

For some reason, the gfortran compiler does not require an interface
to the system() routine while all the other compilers we have tested
do need the interface. This makes it impossible to have a module
that is compiler-independent. The interface is needed in the
null_mpi_utilities_mod.f90, and/or mpi_utilities_mod.f90. The
problem surfaces at link time :

~~~
null_mpi_utilities_mod.o(.text+0x160): In function `__mpi_utilities_mod__shell_execute’:
: undefined reference to `system_’
null_mpi_utilities_mod.o(.text+0x7c8): In function `__mpi_utilities_mod__destroy_pipe’:
: undefined reference to `system_’
null_mpi_utilities_mod.o(.text+0xbb9): In function `__mpi_utilities_mod__make_pipe’:
: undefined reference to `system_’
collect2: ld returned 1 exit status
make: *** [preprocess] Error 1
~~~

There is a script to facilitate making the appropriate change to
`null_mpi_utilities_mod.f90` and `mpi_utilities_mod.f90`. Run the
shell script DART/mpi_utilities/fixsystem with no arguments to simply
‘flip’ the state of these files (i.e. if the system block is defined, it
will undefine the block by commenting it out; if the block is commented
out, it will define it by uncommenting the block). If you want to
hand-edit `null_mpi_utilities_mod.f90` and `mpi_utilities_mod.f90`,
look for the comment block that starts `\! BUILD TIP` and follow the
directions in the comment block.

### module mismatch errors

Compilers create modules in their own particular manner … a module
built by one compiler may not (will usually not) be useable by another
compiler. Sometimes it happens that the Fortran90 modules for the netCDF
interface compiled by compiler A is trying to be used by compiler B.
This generally results in an error message like:

~~~
Fatal Error: File ‘netcdf.mod’ opened at (1) is not a <pick_your_compiler> module file
make: *** [utilities_mod.o] Error 1
~~~

The only solution here is to make sure the mkmf.template file is
referencing the appropriate netCDF installation.

### endian-ness errors

The endian-ness of the binary files is specific to the chipset, not
the compiler or the code (normally). There are some models that require
a specific endian binary file. Most compilers have some sort of
ability to read and/or write binary files of a specific (or non-native)
endianness by throwing some compile flags. It is generally an
‘all-or-nothing’ approach in that trying to micromanage which files are
opened with native endianness and which files are openened with the
non-native endianness is generally too time-consuming and fraught with
error to be of much use. If the compile flags exist and are known to us,
we try to include them in the comment section of the individual
mkmf.template.xxxx.yyyy file.

With the Lanai and earlier versions of DART, endian problems were more common
and most often manifest themselves as ‘time’ errors in the DART
execution. The restart/initial conditions files have the valid time of
the ensuing model state as the first bit of information in the header,
and if these files are ‘wrong’-endian, the encoded times are
nonsensical. Since DART now uses netCDF files, endian errors have been
greatly reduced and generally exist trying to ingest binary observation
sequence files or binary data from some other source.

### MPI

If you want to use MPI and are interested in testing something simple
before total immersion: try running the MPI test routines in the
DART/doc/mpi directory. This directory contains some small test
programs which use both MPI and the netCDF libraries. It may be simpler
to debug any build problems here, and if you need to submit a problem
report to your system admin people these single executables are much
simpler than the entire DART build tree.

<span id=”FAQ” class=”anchor”></span>
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# Frequently Asked Questions for DART



	[General Info about DART](#General)


	[Installation Questions](#Install)


	[Questions about Using DART](#Using)







## General Info about DART

<span id=”General”></span>

> What kind of data assimilation does DART do?

There are two main techniques for doing data assimilation: variational
and ensemble methods. DART uses a variety of ensemble Kalman filter
techniques.

> What parts of the DART source should I feel free to alter?

We distribute the full source code for the system so you’re free to edit
anything you please. However, the system was designed so that you should
be able to add code in a few specific places to add a new model, work
with new observation types, or change the assimilation algorithm.

To add a new model you should be able to add a new
DART/models/XXX/model_mod.f90 file to interface between your model and
DART. We expect that you should not have to alter any code in your model
to make it work with DART.

To add new observation types you should be able to add a new
DART/obs_def/obs_def_XXX_mod.f90 file. If there is not already a
converter for this observation type you can add a converter in
DART/observations/XXX.

If you are doing data assimilation algorithm research you may be
altering some of the core DART routines in the
DART/assim_tools/assim_tools_mod.f90 or DART/filter/filter.f90
files. Please feel free to email DART support (dart at ucar.edu) for
help with how to do these modifications so they work with the parallel
version of DART correctly.

If you add support for a new observation type, a new model, or filter
kind, we’d love for you to send a copy of it back to us for inclusion in
the DART
distribution.

> What systems and compilers do you support? What other tools do I need?

We run on almost any Linux-based system including laptops, clusters, and
supercomputers. This includes IBMs, Crays, SGIs, Macs. We discourage
trying to use Windows but it has been done using the CygWin package.

We require a Fortran 90 compiler. Common ones in use are from GNU
(gfortran), Intel, PGI, PathScale, IBM, and g95.

We need a compatible netCDF library, which means compiled with the same
compiler you build DART with, and built with the Fortran interfaces.

You can run DART as a single program without any additional software. To
run in parallel on a cluster or other multicore platform you will need a
working MPI library and runtime system. If one doesn’t come with your
system already OpenMPI is a good open-source option.

Our diagnostic routines are MATLAB® scripts, which is a commercial
math/visualization package. Some users use IDL, NCL, or R but they have
to adapt our scripts themselves.

### Installation Questions

<span id=”Install”></span>

> How do I get started?

Go to the extensive [DART web pages](../index.html) where there are
detailed instructions on checking the source out of our subversion
server, compiling, running the tutorials, and examples of other users’
applications of DART.

If you really hate reading instructions you can try looking at the
README in the top level directory. But if you run into problems please
read the [full setup instructions](Getting_Started.md#installing)
before contacting us for help. We will start out suggesting you read
those web pages first anyway.

> I’m trying to build with MPI and getting errors.

The MPI compiler commands are usually scripts or programs which add
additional arguments and then call the standard Fortran compiler. If
there is more than one type of compiler on a system you must find the
version of MPI which was compiled to wrap around the compiler you are
using.

In the DART/developer_tests/mpi_utilities/tests directory are some
small programs which can be used to test compiling and running with
MPI.

If you are using version 1.10.0 of OpenMPI and getting compiler errors
about being unable to find a matching routine for calls to MPI_Get()
and/or MPI_Reduce(), please update to version 1.10.1 or later. There
were missing interfaces in the 1.10.0 release which are fixed in the
1.10.1
release.

> I’m getting errors related to netCDF when I try to build the executables.

Any application that uses the netCDF data libraries must be compiled
with exactly the same compiler as the libraries were built with. On
systems which have either multiple compilers, or multiple versions of
the same compiler, there is the possibilty that the libraries don’t
match the compiler you’re using to compile DART. Options here are:



	If there are multiple versions of the netCDF libraries installed,
find a method to select the right version; e.g. specify the exact
path to the include files and libraries in your mkmf.template file,
or load the right module if your system uses the ‘module’ command to
select software options.


	Change the version of the compiler you are using to build DART to
match the one used to build netCDF.


	Build your own version of the netCDF libraries with the compiler you
prefer to use. See [this web
page](http://www.unidata.ucar.edu/software/netcdf/docs/building_netcdf_fortran.html)
for help in building the libraries. DART requires only the basic
library with the netCDF 3 interfaces, but will work with netCDF 4
versions. Building netCDF 4 does require additional libraries such
as HDF, libz, etc.







If you believe you are using the right version of the compiler, then
check to see if the Fortran interfaces have been compiled into a single
library with the C code, or if there are two libraries, libnetcdf.a and
libnetcdff.a (note the 2 f’s in the second library). The library lines
in your mkmf.template must reference either one or both libraries,
depending on what exists. This is a choice that is made by the person
who built the netCDF libraries and cannot be predicted
beforehand.

> I’m getting errors about undefined symbol “_system_” when I try to compile.

If you’re running the Lanai release or code from the trunk later than
2013, the DART Makefiles should automatically call a script in the
DART/mpi_utilities directory named fixsystem. This script tries to
alter the MPI source code in that directory to work with your compiler.
If you still get a compiler error look at this script and see if you
have to add a case for the name of your compiler.

If you’re running the Kodiak release or earlier, you have to run
fixsystem yourself before compiling. We distributed the code so it
would work without change for the gfortran compiler, but all other
compilers require that you run fixsystem before trying to
compile.

> I have a netCDF library but I’m getting errors about unrecognized module format.

The netCDF libraries need to be built by the same version of the same
compiler as you are building DART. If your system has more than one
compiler on it (e.g. intel ifort and gfortran) or multiple versions of
the same compiler (e.g. gfortran 4.1 and 4.5) you must have a version of
the netCDF libraries which was built with the same version of the same
compiler as you’re using to build
DART.

> I’m getting errors about -lnetcdff not found, or I’m getting errors about undefined symbols for things in the netCDF libraries.

There are several important options when the netCDF libraries are built
that change what libraries you get and whether you have what you need.
The problems we run into most frequently are:



	If the netCDF installation includes only the C library routines and
not the Fortran interfaces. We require both.


	The C routines are always in -lnetcdf, but the Fortran interfaces
can either be included in that single library or placed in a
separate -lnetcdff library (note 2 f’s).


	If HDF support is included, additional libraries are required to
link an executable. Most of our mkmf template files have comments
about the usual list of required libraries that you need to include.







Bottom line: What you need to set for the library list in your
DART/mkmf/mkmf.template file depends on how your netCDF was
built.

> My model runs in single precision and I want to compile DART the same way.

We recommend that you run an assimilation with Fortran 64-bit
reals (e.g. all real values are real*8 or ‘double precision’). However if your
model is compiled with 32-bit reals (real*4 or ‘single precision’) there is
an option to build DART the same way. Edit DART/assimilation_code/modules/utilities/types_mod.f90
and change the definition of R8 to equal R4 (comment out the
existing line and comment in the following line). Rebuild all DART
executables and it will run with single precision reals. We declare
every real variable inside DART with an explicit size, so we do not
recommend using compiler flags to try to change the default real
variable precision because it will not affect the DART code.

### Questions about Using DART

<span id=”Using”></span>

> I’m trying to run an MPI filter and I’m getting N copies of every message.

Look in the log or in the standard output for the message:
‘initialize_mpi_utilities: Running with N MPI processes.’ Instead of
this message, if you see: initialize_mpi_utilities: Running single
process then you have NOT successfully compiled with MPI; you are
running N duplicate copies of a single-task program. Rerun the
quickbuild.csh script with the -mpi flag to force it to build filter
with mpif90 or whatever the mpi compiler wrapper is called on your
system.

> How does DART interact with running my model?

If you are running one of the “low-order” models (e.g. one of the Lorenz
models, the null model, the pe2lyr model, etc), the easiest way to run
is to let DART control advancing the model when necessary. You run the
“filter” executable and it runs both the assimilation and model advances
until all observations in the input observation sequence file have been
assimilated. See the “async” setting in the
[filter namelist documentation](https://ncar.github.io/DART/api/v0.0.6/program/filter.html)
for more information.

If you are running a large model with a complicated configuration and/or
run script, you will probably want to run the assimilation separately
from the model advances. To do this, you will need to script the
execution, and break up the observations into single timestep chunks per
file. The scripting will need to create filter input files from the
model files, link the current observation file to the input filename in
the namelist, copy or rename any inflation files from the previous
assimilation step, run filter, convert the filter output to model input
files, and then run the model. There are example scripts which do this
in the WRF shell_scripts directory, also the MPAS shell_scripts
directory. These scripts are both highly model-dependent as well as
computing system dependent.

If you are running any of the CESM models (e.g. CAM, POP, CLM) then the
scripts to set up a CESM case with assimilation are provided in the DART
distribution. At run time, the run script provided by CESM is used.
After the model advance a DART script is called to do the assimilation.
The “multi-instance” capability of CESM is used to manage the multiple
copies of the components which are needed for assimilation, and to run
them all as part of a single job.

> After assimilating, my model variables are out of range.

One of the assumptions of the Kalman filter is that the model states and
the observation values have gaussian distributions. The assimilation can
work successfully even if this is not actually true but there are
certain cases where this leads to problems.

If any of the model state values must remain bounded, for example values
which must remain positive, or must remain between 0 and 1, you may have
to add some additional code to ensure the posterior values obey these
constraints. It is not an indication of an error if after the
assimilation some values are outside the required range.

Most users deal with this, successfully, by letting the assimilation
update the values as it will, and then during the step where the model
data is converted from DART format to the model native format, any
out-of-range values are changed at that time. For example, the WRF model
has a namelist item in the &model_nml namelist which can be set at
run-time to list which variables have minimum and/or maximum values and
the conversion code will enforce the given limits.

Generally this works successfully, but if the observations or the model
are biased and the assimilation is continuously trying to move model
state out of range, the distribution can become seriously unbalanced. In
this case another solution, which requires more coding, might be to
convert the values to a log scale on import to DART, do the assimilation
with the log of the observation values, and then convert back to the
original scale at export time. This ensures the values stay positive,
which is common requirement for legal
values.

> After assimilating, my job finished successfully but no values changed.

This is a common problem, especially when adding a new observation type
or trying to assimilate with a new model. But it can happen at any time
and can be confusing about why nothing is changing.
See [the “Diagnostics” web page](Diagnostics.md#DidItWork)
for a list of common causes of the assimilation output state being
the same as the input state, and how to determine which one is responsible.

> You have lots of namelists. How can I tell what to set?

Each module in DART has an html web page which describes the namelists
in detail. Start with DART/index.html and follow the links to all the
other modules and namelists in the system. If you want help with setting
up an experiment the DART/filter/filter.html page has some
introductory advice for some of the more important namelist settings.

> I’m not getting an error but I am getting MPI timeouts

If your job is getting killed for no discernable reason but is usually
during computing prior or posterior forward operators, or during writing
the diagnostics file, the problem may be caused by the MPI timeout
limit. This usually happens only when the number of MPI tasks is much
larger than the number of ensemble members, and there are very slow
forward operator computations or very large states to write into the
diagnostics files. In the standard DART distribution only the first N
tasks (where N is the number of ensemble members) are doing work during
the forward operators, or only 1 task for writing diagnostic files. All
the other tasks will be waiting at an MPI barrier. If they wait there
long enough they reach the timeout threshold which assumes that at least
one or more other tasks have failed and so they exit.

The solutions are either to set an environment variable that lengthens
the timeout threshold, run with fewer MPI tasks, or ask the DART team to
be a Beta user of a newer version of DART which does not have such large
time differentials between different MPI tasks.

> filter is finishing but my job is hanging at exit

If filter finishes running, including the final timestamp message to the
log file, but then the MPI job does not exit (the next line in the job
script is not reached), and you have set the MPI timeout to be large to
avoid the job being killed by MPI timeouts, then you have run into a bug
we also have seen. We believe this to be an MPI library bug which only
happens under a specific set of circumstances. We can reproduce it but
cannot find a solution. The apparent bug happens more frequently with
larger processor counts (usually larger than about 4000 MPI tasks), so
if you run into this situation try running with a smaller MPI task count
if possible, and not setting the MPI debug flags. We have seen this
happen on the NCAR supercomputer Yellowstone with both the MPICH2 and
PEMPI MPI libraries.
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# Did my experiment work?

## filter ran and produced output files, now what?

One of the most requested features for DART has been finer control of
what information is written and when. Do you want the input ensemble
spread before the application of prior inflation? After prior inflation
but before the assimilation? After the assimilation but before posterior
inflation? After posterior inflation? etc. There are several namelist
settings that control what files are output.
[Section&nbsp;16](../tutorial/section_16.pdf) of the DART
tutorial has a more detailed explanation.

From a computational perspective, there are two broad situations:


	filter is called for a single assimilation and each ensemble
member is in its own file (both single_file_in = .false. and
single_file_out = .false..), and


	filter is called once for multiple assimilation cycles and writes
a single output file containing information for all the ensemble
members (single_file_out = .true.) for each stage! Depending
on what you choose to write, this actually results in more than a
single file.




`single_file_out = .false.` :  filter is usually called for a single
assimilation cycle by ‘large’ models or in cases where it is beneficial
to run different number of MPI tasks for the model advances and the
assimilation. In this case, there can be a substantial computational
efficiency to have each ensemble member write its information to a
separate file, and each file can be written simultaneously by different
tasks. The tradeoff (at the moment) is that each of the files can only
have a single timestep in them. Consequently, some files are redundant
and should not be output.
See [Section&nbsp;16](../tutorial/section_16.pdf) of the DART
tutorial for a more detailed explanation.

`single_file_out = .true.` :  When filter is used for a long
assimilation experiment (as in the case for the low-order models), it is
possible to consolidate all the information for a particular stage into
a single file that contains all the ensemble members, the mean, spread,
inflation, etc. This results in far fewer files, and each file may
contain multiple timesteps to encompass the entirety of the experiment.
Since a single task must write each file, there is some computational
overhead.

Perhaps somewhat paradoxically, single_file_out only refers to the
output for a particular stage. So even if you set
single_file_out = .true. , you can get several output files -
one per stage. However, if you set single_file_out = .false. ,
be prepared for a deluge of files.
Be careful about what stages you choose to write.

### What output and diagnostic files are produced:

#### When single_file_out&nbsp;=&nbsp;.false.


from perfect_model_obs |      |      |

———————— | —- | —- |

obs_seq.out | | the synthetic observations at some predefined times and locations |

perfect_output.nc | 1&nbsp;timestep | a netCDF file containing the model trajectory - the true state |




	There are some namelist settings that control what files are output.
	Depending on the settings for input.nml&filter_nml:stages_to_write and others …






from filter |      |      |

————- | —- | —- |

forecast_member_####.nc | 1&nbsp;timestep | the ensemble forecast, each ensemble member is a separate file |

forecast_[mean,sd].nc     | 1&nbsp;timestep | the mean and standard deviation (spread) of the ensemble forecast |

forecast_priorinf_[mean,sd].nc | 1&nbsp;timestep | the prior inflation information before assimilation |

forecast_postinf_[mean,sd].nc | 1&nbsp;timestep | the posterior inflation information before assimilation |

preassim_member_####.nc | 1&nbsp;timestep | the model states after any prior inflation but before assimilation |

preassim_[mean,sd].nc | 1&nbsp;timestep | the mean and standard deviation (spread) of the ensemble after any prior inflation but before assimilation |

preassim_priorinf_[mean,sd].nc | 1&nbsp;timestep | the prior inflation information before assimilation |

preassim_postinf_[mean,sd].nc | 1&nbsp;timestep | the posterior inflation information before assimilation |

postassim_member_####.nc | 1&nbsp;timestep | the model states after assimilation but before posterior inflation |

postassim_[mean,sd].nc | 1&nbsp;timestep | the mean and standard deviation (spread) of the ensemble after assimilation but before posterior inflation |

postassim_priorinf_[mean,sd].nc | 1&nbsp;timestep | the (new) prior inflation information after assimilation |

postassim_postinf_[mean,sd].nc | 1&nbsp;timestep | the (new) posterior inflation information after assimilation |

analysis_member_####.nc | 1&nbsp;timestep | the model states after assimilation and after any posterior inflation |

analysis_[mean,sd].nc | 1&nbsp;timestep | the mean and standard deviation (spread) of the ensemble after assimilation and after posterior inflation |

analysis_priorinf_[mean,sd].nc | 1&nbsp;timestep | the (new) prior inflation information after assimilation |

analysis_postinf_[mean,sd].nc | 1&nbsp;timestep | the (new) posterior inflation information after assimilation |

output_[mean,sd].nc | 1&nbsp;timestep | the mean and spread of the posterior ensemble |

output_priorinf_[mean,sd].nc | 1&nbsp;timestep | the (new) prior inflation information after assimilation |

output_priorinf_[mean,sd].nc | 1&nbsp;timestep | the (new) posterior inflation information after assimilation |

obs_seq.final | | the model estimates of the observations (an integral part of the data assimilation process) |




from both |      |

——— | —- |

dart_log.out | the ‘important’ run-time output (each run of filter appends to this file; remove it or start at the bottom to see the latest values) |

dart_log.nml | the input parameters used for an experiment |



#### When single_file_out = .true.

All the information for each stage is contained in a single file that
may have multiple timesteps.


from perfect_model_obs |      |      |

———————— | —- | —- |

obs_seq.out       |             | the synthetic observations at some predefined times and locations |

perfect_output.nc | N timesteps | a netCDF file containing the model trajectory - the true state |




	There are some namelist settings that control what files are output. Depending on the settings for
	input.nml &filter_nml:stages_to_write and others …






from filter | | |

————– | —- | —- |

filter_input.nc | 1&nbsp;timestep | The starting condition of the experiment. All ensemble members, [optionally] the input mean and standard deviation (spread), [optionally] the prior inflation values, [optionally] the posterior inflation values |

forecast.nc | N&nbsp;timesteps | The ensemble forecast. All ensemble members, the mean and standard deviation (spread), the prior inflation values, the posterior inflation values |

preassim.nc | N&nbsp;timesteps | After any prior inflation but before assimilation. All ensemble members, the mean and standard deviation (spread) of the ensemble, the prior inflation values, the posterior inflation values |

postassim.nc | N&nbsp;timesteps | After assimilation but before posterior inflation. All ensemble members, the mean and standard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) posterior inflation values |

analysis.nc | N&nbsp;timesteps | After assimilation and after any posterior inflation. All ensemble members, the mean and standard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) posterior inflation values |

filter_output.nc | 1&nbsp;timestep | After assimilation and after any posterior inflation. All ensemble members, the mean and standard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) posterior inflation values |

obs_seq.final | | the model estimates of the observations (an integral part of the data assimilation process) |




from both | |

————- | — |

dart_log.out | the ‘important’ run-time output (each run of filter appends to this file; remove it or start at the bottom to see the latest values) |

dart_log.nml | the input parameters used for an experiment |



### First questions to ask

NOTE: the remainder of this document is written from the perspective
of an experiment run with `single_file_out=.true.` The permutations
of the file names is just too great to write exhaustive documentation.

After filter executes without error and produces an obs_seq.final
file, a preassim.nc file, and an analysis.nc file, the first
questions to ask are:


	“Is the model state output from filter different from the input?”,
and


	“Were any observations successfully assimilated?”.




One way to check if the output model state data was changed by the
assimilation is to use the ‘ncdiff’ tool to difference the preassim.nc
and analysis.nc files:

> ncdiff analysis.nc preassim.nc Innov.nc
> ncview Innov.nc

If your model can run under single_file_[in,out] Look at the
ensemble mean variables. If all values are 0, then the assimilation
changed nothing in the state. If your model writes multiple output
files, diff the preassim_mean.nc and output_mean.nc.

<span id=”debugging” class=”anchor”></span> [](#debugging)



#### Debugging hints:

You may need to rerun filter multiple times to diagnose this. The
fastest way to get to the answer is to make filter very fast to run.
You can do this by:


	make an observation sequence file with only 1 or a just a few observations in
it, and


	configure a run so filter does a single assimilation and exits,
without having to advance the ensemble of models or do other work.




##### To make an obs file with a single observation, use one of these methods:


	run create_obs_sequence to make a new, short, observation sequence file


	Use the obs_sequence_tool to cut your existing obs_seq.out file
down to just a few obs by selecting only a subset of the types and
setting a very short time window (just a second or two where you
know there are obs).




##### To make the filter program only do an assimilation:


	Edit the input.nml and in the &filter_nml namelist set the
init_time_days and init_time_seconds to match the
observation time in the truncated observation sequence file. This overrides any
times in the input files and ensures that filter will only
assimilate and not try to advance the model.


	Make sure the truncated observation sequence file contains only 1 obs, a few obs
at the same time, or obs close enough together in time to fit into a
single assimilation window.




If there are no changes in the model state after assimilation, then
examine the obs_seq.final file. There are two ways to do this. 1) If
you are testing with a single observation, just look in the file. If
this file is in binary format, change the namelist so the output
observation sequence file will be written in ascii:

~~~
&obs_sequence_nml



write_binary_obs_sequence = .false.




/




~~~

and rerun filter to regenerate an obs_seq.final file in ascii.
[These&nbsp;diagrams](Observations.md#obs_seq_overview) help to understand
an obs_seq.final file. 2) If you are using many observations, run the
[obs_diag.f90](https://ncar.github.io/DART/api/v0.0.6/program/obs_diag.html)
appropriate for your model. There are some
[diagnostic&nbsp;scripts](#mat_obs) to help summarize and explore what is going on.

If all the prior and posterior mean values are -888888.0 (the DART
“missing data” value), those observations were not assimilated. Note:
some observations have precomputed values and the posterior values for
these will always be -888888.0, no matter if the observation was
assimilated or not. If it is not already set, change
&filter_nml::num_output_obs_members to be the same as the ensemble size.
This will give you all the forward operator values for all the ensemble
members. You can determine if all ensemble members are failing in the
same way, or if only a few are problematic.

For the failing observations, the ‘DART QC’ may indicate the reason.
([How to locate the different values in an obs_seq.final file.](Observations.md#obs_seq_overview)
The ‘DART QC’ field is usually the second of the 2 “quality control” copies.)
A list of all the DART QC values can be found in [this&nbsp;table](#qc_table).


	If the DART QC values are 4, the forward operators have failed. Look
at the model_interpolate() routine in your model_mod.f90 file,
or the forward operator code in
observations/forward_operators/obs_def_xxx_mod.f90 for your
observation type. A successful forward operator must return a valid
obs_val and an istatus&nbsp;=&nbsp;0. If the forward operator code returns
different istatus values for different error types, you can set
&filter_nml::output_forward_op_errors&nbsp;=&nbsp;.true. and rerun
filter to see exactly what error istatus codes are being set. See
[the filter webpage](https://ncar.github.io/DART/api/v0.0.6/program/filter.html)
for more information on how to use the ‘output_forward_op_errors’
option. Negative istatus values are reserved for the system,
istatus&nbsp;=&nbsp;0 is success, and any positive value indicates a failed
forward operator. The code is free to use different positive values
to signal different types of errors.


	If the DART QC values are 5, those observation types were
intentionally ignored because they were not listed in the
&obs_kind_nml namelist, in the ‘assimilate_these_obs_types’
stringlist.


	If the DART QC values are 6, the data quality control that came with
the original observation data indicates this is a bad quality
observation and it was skipped for this reason.


	If the DART QC values are 7, the observation value is too far away
from the ensemble mean. Set &filter_nml::outlier_threshold&nbsp;=&nbsp;-1
to ignore this for now and rerun. In general, this is
not the optimal strategy as the number of observations inconsistent
with the ensemble is a very powerful indicator of the success or
failure of the assimilation.




If the prior and posterior values in the obs_seq.final are not
-888888.0 but are identical, your obs are being assimilated but are
having no impact.

The most common reasons assimilated obs have no impact on the model
state include:



	Zero spread in ensemble members
Your initial ensemble members must have different values for each
state item. If all members have identical values, the observations
cannot make a change. To diagnose this condition, look at the prior
ensemble spread. This is either in preassim.nc or
preassim_sd.nc, depending on your model. If all the values are 0,
this is your problem. One way to generate an ensemble with some
spread is to set
&filter_nml::perturb_from_single_instance&nbsp;=&nbsp;.false.,
(which will still
require a single filter initial condition file) but then the
filter code will add random gaussian perturbations to each state
vector item to generate an initial ensemble with spread. The
magnitude of the gaussian noise added is controlled by the
&filter_nml::perturbation_amplitude. It is also
possible to write your own perturbation routine in your
model_mod.f90 code.


	Cutoff value too small
If the localization radius is too small, the observation may not be
‘close enough’ to the model grid to be able to impact the model.
Check the localization radius (&assim_tools_nml::cutoff). Set it
to a very large number (e.g.&nbsp;100000) and rerun. If there is now an
impact, the cutoff was restricting the items in the state vector so
your obs had no impact before. Cutoff values are dependent on the
location type being used. It is specified in radians for the
threed_sphere locations module (what most large models use), or in
simple distance (along a unit circle) if using a low order model
(lorenz, ikeda, etc).


	Obs error values too large (less likely)
If the observation error is very large, it will have no impact on
the model state. This is less likely a cause than other
possibilities.


	No correlation (unlikely)
If there is no correlation between the distribution of the forward
observation values and the state vector values, the increments will
be very tiny. However there are generally still tiny increments
applied, so this is also a low likelyhood case.


	Errors in forward operator location computations, or
*get_close_obs()*
If there is an error in the model_mod.f90 code in either
get_state_meta_data(), model_interpolate(), or the vertical
conversion code in get_close_obs(), it is possible for the
forward operators to appear to be working correctly, but the
distances computed for the separation between the obs and the state
vector values can be incorrect. The most frequent problem is that
the wrong locations are being passed back from
get_state_meta_data(). This can result in the increments being
applied in the wrong locations or not at all. This is usually one of
the things to test carefully when developing a new model interface,
and usually why we recommend starting with a single observation at a
known location.


	Incorrect vertical conversion
If the model is using 3d coordinates and needs the capability to
convert between pressure, height, and/or model level, the conversion
may be incorrect. The state vector locations can appear to be too
high or too low to be impacted by an observation. Some models have a
height limit built into their model_mod code to avoid trying to
assimilate observations at the model top. The observations cannot
make meaningful changes to the model state there and trying to
assimilate them can lead to problems with the inflation. If the code
in the model_mod is excluding observations incorrectly, or you are
testing with observations at the model top, this can result in no
impact on the model state.







### How is the output different from the input?

If you compute the difference between the prior and posterior diagnostic
files by this process:

> ncdiff analysis.nc preassim.nc Innov.nc
> ncview Innov.nc

and you see a difference, is it correct?

If you run with a single observation, you should be able to easily see
the impact - generally it’s a mostly spherical or circular ring around
the observation location depending on your vertical localization, you
may or may not see an impact in the vertical. Using


&location_nml::horiz_dist_only=.true. is usually a good idea for




a full 3d model to start out, and then add vertical localization once
you believe the horizontal impact makes sense. Without any vertical
localization, the observation should have an impact along the entire
vertical column. (For lower order models this doesn’t apply.) If you
change the cutoff distances you should be able to watch the change in
impact on the state and make sure that it’s something reasonable.

Now you can use the observation space diagnostics, and the state space
diagnostics to get more information about what the impact was, and
whether it’s doing the right thing or not.

<span id=”DidItWork” class=”anchor”></span> [](#DidItWork)



# Was the Assimilation Effective?

If your filter run finished, and the Posterior is now different from the
Prior, now what? This section presumes that you have debugged your
model/DART interfaces or are using a model that came with the DART
distribution. A working implementation.

There is no single metric that can declare success.

[The DART Tutorial](dart_tutorial.md) has the
best explanation of what to look for, what to change to improve the next
experiment, etc. DART has an extensive set of diagnostics implemented in
MATLAB®. To use them, make sure you have read the
[Configuring MATLAB®](Getting_Started.md#matlab) section.

<!– TJH FIXME what is the right link reference syntax –>

### The Observations are the Key.

My own (Tim’s) personal view is that the first thing to check is to see
how many observations are getting rejected by the assimilation in
addition to the RMSE and spread of the ensemble. A natural part of the
DART framework is that these metrics are calculated automatically and
are readily available in the obs_seq.final files. Checking the
temporal evolution of the RMSE and observation rejection characteristics
is a first-order metric for determining the health of the assimilation
system.


	Use
[obs_diag.f90](https://ncar.github.io/DART/api/v0.0.6/program/obs_diag.html)
to process the collection of obs_seq.final files for regions and
times of interest. Edit the input.nml:obs_diag_nml namelist to
reflect the details of your experiment, and then run obs_diag to
create a netCDF file obs_diag_output.nc that contains the
summaries.


	Make sure the spread of the ensemble does not collapse. Use
plot_evolution.m with copystring = ‘spread’; to explore
obs_diag_output.nc. It is normal (and desirable!) for the
spread to decrease somewhat from the initial value, but it should
not decrease to a small value. Insufficient spread leads to filter
divergence and a large observation rejection rate.
plot_evolution.m automatically plots the number of observations
available and the number of observations successfully assimilated.


	Make sure the RMSE of the ensemble does not collapse. Use
plot_evolution.m with copystring = ‘rmse’; to explore
obs_diag_output.nc. It is important to interpret the RMSE in
light of the number of observations successfully assimilated. It is
possible to have a very low RMSE if the assimilation system rejects
all of the observations that are in disagreement! A low RMSE is
desirable and is a much stronger result if most/all of the
observations are being assimilated successfully. Also - the RMSE of
the prior is a much stronger result. Any method can overfit the
observations (match them perfectly) - what is important is that the
forecast is a good forecast!


	Make sure the RMSE of the ensemble does not continually increase.
plot_evolution.m with copystring = ‘rmse’; to explore
obs_diag_output.nc. It is natural for the RMSE to vary in time
in response to the changing number and location of the observations,
the phenomenon being modeled, etc. … but it should not generally
increase as the system evolves. Once the system has ‘burned in’, the
RMSE should be relatively stable.


	Check to make sure the observations that are getting rejected are
getting rejected for the right reasons. Run obs_seq_to_netcdf
to convert the obs_seq.final files into netCDF files that can be
explored with link_obs.m or plot_obs_netcdf.m. Both of these
tools will allow you to isolate the rejected observations and
determine if the observations are being rejected because they are in
disagreement with the ensemble (DART QC = 7) or they were rejected
because of a namelist setting (DART QC = 5), or incoming QC value
(DART QC = 6), or were they simply outside the domain (DART
generally only interpolates, not extrapolate) or …


	Check that the ensemble spread captures the ‘truth’ as determined by
the observations. Use obs_diag to create the data for a rank
histogram. [Plot the histograms with ncview](#ncview_histogram) or
[plot_rank_histogram.m](#mat_obs)




Generally speaking, the observation-space diagnostics provide the first
and best metrics for the assimilation system. We always have
observations, we rarely have the ‘truth’ in a full state-space
representation. Personally, I rarely see value when comparing to some
other gridded product - as it surely has its own set of deficiencies or
assumptions. Observations aren’t perfect - but they are still best.

NOTE: Combining observations from multiple sources can lead to the
same observation type begin defined with different vertical coordinate
systems. While this does not pose a problem for assimilation, it does
pose a problem for the diagnostics. The current
[obs_diag.f90](https://ncar.github.io/DART/api/v0.0.6/program/obs_diag.html)
cannot (vertically) bin the same observation type that exploits two
different vertical coordinate systems. If you get a WARNING from
obs_diag:CheckVertical() you should know that the observation
triggering the warning uses a different vertical coordinate system that
the first observation encountered of that same type. If the termlevel
is set to be 1, this is a fatal error, not a warning. The following
example is one where observation 7113 defined the vertical coordinate
system to be VERTISSURFACE (i.e. -1) and observation 7150 was created
using VERTISPRESSURE. The messages take the form:

~~~
WARNING FROM:


routine: CheckVertical
message: obs 7150 type  42 changing from -1 to pressure - def by obs 7113




~~~

### State-Space Diagnostics

If you’re reading this, it means you have an assimilation that is not
rejecting too many observations, the ensemble spread is relatively
constant and is not too small, and presumably the RMSE is stable if not
decreasing. Now it is time to assess the affect the assimilation has on
your model - the whole point of data assimilation.

DART produces (sometimes many) netCDF files: preassim.nc and
analysis.nc. Your files many have slightly different names depending
on the namelist settings you have chosen. You should get familiar with
what is available in the files you have created. Please read the
documentation for
[&filter_nml](https://ncar.github.io/DART/api/v0.0.6/program/filter.html),
especially for the variables: stages_to_write, output_members,
output_mean, output_sd, and single_file_out. You should
experiment and become familiar with ALL the namelist variables
controlling what gets written. The ability to explore the ensemble at
various parts of the assimilation process and/or restrict the volume of
data being written has been on of our most-requested
enhancements.


unix command  | meaning |

————–| ——- |

ncdump -v MemberMetadata preassim.nc     |  to check which copy you want to explore |

ncdiff analysis.nc preassim.nc Innov.nc  |  ncdiff comes from NCO, not DART         |

ncview Innov.nc                          |  ncview is another ‘third-party’ tool.   |



See the expanded section on
[DART state-space diagnostics](#ss_diagnostics) for more.

<span id=”obs_diagnostics” class=”anchor”></span> [](#obs_diagnostics)
<span id=”qc_table”        class=”anchor”></span> [](#qc_table)



### Observation-Space Diagnostics.

The DART QC table is an important piece of information.


QC value | meaning |

:——- | :—— |

0,1 == both Prior and Posterior are good. |

0 | Assimilated O.K. |

1 | Evaluated O.K., not assimilated because namelist specified evaluate only. |

2,3 == Prior OK, but Posterior failed. |

2 | Assimilated O.K. BUT posterior forward operator failed. |

3 | Evaluated O.K. BUT posterior forward operator failed. |

4 or higher == both Prior and Posterior have failed |

4 | Prior forward operator failed. |

5 | Not used because of namelist control. |

6 | Rejected because of incoming data QC higher than namelist control. |

7 | Rejected because of outlier threshold test. |

8 | Vertical conversion failed. |

9 and above | reserved for future use. |



It is required to post-process the obs_seq.final file(s) with
[obs_diag](https://ncar.github.io/DART/api/v0.0.6/program/obs_diag.html)
to generate a netCDF file containing accumulated diagnostics for
specified regions, etc. Since the experiment information (assimilation
interval, assimilating model, etc.) are not recorded in the
obs_seq.final file, the
[obs_diag_nml](https://ncar.github.io/DART/api/v0.0.6/program/obs_diag.html)
namelist has a section that allows specification of the necessary
quantities.

The following quantities are normally diagnosed:



|                                                                                                      |



———— | —————————————————————————————————- |

Nposs        | the number of observations for each assimilation period;                                             |

Nused        | the number of observations successfully assimilated each assimilation period;                        |

NbigQC       | the number of observations that had an undesirable (original) QC value;                              |

NbadIZ       | the number of observations that had an undesirable Innovation Z;                                     |

NbadUV       | the number of velocity observations that had a matching component that was not assimilated;          |

NbadLV       | the number of observations that were above or below the highest or lowest model level, respectively; |

rmse         | the rmse of the ensemble;                                                                            |

bias         | the bias of the ensemble (forecast-observation);                                                     |

spread       | the spread of the ensemble;                                                                          |

totalspread  | the pooled spread of the observation (knowing its observational error) and the ensemble.             |

NbadDARTQC   | the number of observations that had a DART QC value (> 1 for a prior, > 3 for a posterior)         |

observation  | the mean of the observation values                                                                   |

ens_mean     | the ensemble mean of the model estimates of the observation values                                   |

N_DARTqc_0   | the number of observations that had a DART QC value of 0                                             |

N_DARTqc_1   | the number of observations that had a DART QC value of 1                                             |

N_DARTqc_2   | the number of observations that had a DART QC value of 2                                             |

N_DARTqc_3   | the number of observations that had a DART QC value of 3                                             |

N_DARTqc_4   | the number of observations that had a DART QC value of 4                                             |

N_DARTqc_5   | the number of observations that had a DART QC value of 5                                             |

N_DARTqc_6   | the number of observations that had a DART QC value of 6                                             |

N_DARTqc_7   | the number of observations that had a DART QC value of 7                                             |

N_DARTqc_8   | the number of observations that had a DART QC value of 8                                             |



<span id=”mat_obs” class=”anchor”></span> [](#mat_obs)

The observation-space functions are in the DART/diagnostics/matlab
directory. Once you have processed the obs_seq.final files into a
single obs_diag_output.nc, you can use that as input to your own
plotting routines or use the following DART MATLAB® routines:


	[plot_evolution.m](../../diagnostics/matlab/plot_evolution.m) plots the temporal evolution
	of any of the quantities above for each variable for specified levels.
The number of observations possible and used are plotted on the same axis.





~~~
fname      = ‘POP11/obs_diag_output.nc’;        % netcdf file produced by ‘obs_diag’
copystring = ‘rmse’;                            % ‘copy’ string == quantity of interest
plotdat    = plot_evolution(fname,copystring);  % – OR –
plotdat    = plot_evolution(fname,copystring,’obsname’,’RADIOSONDE_TEMPERATURE’);
~~~

<img src=”../images/science_nuggets/plot_evolution_example.png” height=”200” alt=”plot evolution” />


	[plot_profile.m](../../diagnostics/matlab/plot_profile.m) plots the spatial and temporal
	average of any specified quantity as a function of height. The number
of observations possible and used are plotted on the same axis.





<img src=”../images/science_nuggets/plot_profile_example.png” height=”200” alt=”plot profile” />

~~~
fname      = ‘POP11/obs_diag_output.nc’;        % netcdf file produced by ‘obs_diag’
copystring = ‘rmse’;                            % ‘copy’ string == quantity of interest
plotdat    = plot_profile(fname,copystring);
~~~


	[plot_rmse_xxx_evolution.m](../../diagnostics/matlab/plot_rmse_xxx_evolution.m) same as plot_evolution.m
	but will overlay rmse on the same axis.



	[plot_rmse_xxx_profile.m](../../diagnostics/matlab/plot_rmse_xxx_profile.m) same as plot_profile.m
	with an overlay of rmse.



	[plot_bias_xxx_profile.m](../../diagnostics/matlab/plot_bias_xxx_profile.m) same as plot_profile.m
	with an overlay of bias.



	[two_experiments_evolution.m](../../diagnostics/matlab/two_experiments_evolution.m) same as
	plot_evolution.m but will overlay multiple (more than two, actually)
experiments (i.e. multiple obs_diag_output.nc files) on the same
axis. A separate figure is created for each region in the
obs_diag_output.nc file.





~~~
files    = {‘POP12/obs_diag_output.nc’,’POP11/obs_diag_output.nc’};
titles   = {‘CAM4’,’CAM3.6.71’};
varnames = {‘ACARS_TEMPERATURE’};
qtty     = ‘rmse’;
prpo     = ‘prior’;
levelind = 5;
two_experiments_evolution(files, titles,{‘ACARS_TEMPERATURE’}, qtty, prpo, levelind)
~~~

<img src=”../images/science_nuggets/two_experiments_evolution_example.png” height=”200” alt=”two evolution” />


	[two_experiments_profile.m](../../diagnostics/matlab/two_experiments_profile.m) same as
	plot_profile.m but will overlay multiple (more than two, actually)
experiments (i.e. multiple obs_diag_output.nc files) on the same
axis. If the obs_diag_output.nc file was created with multiple
regions, there are multiple axes on a single figure.





~~~
files    = {‘POP12/obs_diag_output.nc’,’POP11/obs_diag_output.nc’};
titles   = {‘CAM4’,’CAM3.6.71’};
varnames = {‘ACARS_TEMPERATURE’};
qtty     = ‘rmse’;
prpo     = ‘prior’;
two_experiments_profile(files, titles, varnames, qtty, prpo)
~~~

<img src=”../images/science_nuggets/two_experiments_profile_example.png” height=”200” alt=”two profile” />


	[plot_rank_histogram.m](../../diagnostics/matlab/plot_rank_histogram.m) will create rank histograms
	for any variable that has that information present in obs_diag_output.nc.





~~~
fname     = ‘obs_diag_output.nc’; % netcdf file produced by ‘obs_diag’
timeindex = 3;                    % plot the histogram for the third timestep
plotdat   = plot_rank_histogram(fname, timeindex, ‘RADIOSONDE_TEMPERATURE’);
~~~

<img src=”../images/science_nuggets/rank_hist_matlab_example.png” height=”200” alt=”rank hist” />

You may also convert observation sequence files to netCDF by using
[obs_seq_to_netcdf](https://ncar.github.io/DART/api/v0.0.6/program/obs_seq_to_netcdf.html).
All of the following routines will work on observation sequences files
AFTER an assimilation (i.e. obs_seq.final files that have been
converted to netCDF), and some of them will work on obs_seq.out-type
files that have been converted.

<span id=”read_obs_netcdf” class=”anchor”></span> [](#read_obs_netcdf)
<span id=”plot_obs_netcdf” class=”anchor”></span> [](#plot_obs_netcdf)


	[read_obs_netcdf.m](../../diagnostics/matlab/read_obs_netcdf.m) reads a particular variable
	and copy from a netCDF-format observation sequence file and returns a
single structure with useful bits for plotting/exploring.
This routine is the back-end for plot_obs_netcdf.m .





~~~
fname         = ‘obs_sequence_001.nc’;
ObsTypeString = ‘RADIOSONDE_U_WIND_COMPONENT’;   % or ‘ALL’ …
region        = [0 360 -90 90 -Inf Inf];
CopyString    = ‘NCEP BUFR observation’;
QCString      = ‘DART quality control’;
verbose       = 1;   % anything > 0 == ‘true’
obs = read_obs_netcdf(fname, ObsTypeString, region, CopyString, QCString, verbose);
~~~


	[plot_obs_netcdf.m](../../diagnostics/matlab/plot_obs_netcdf.m) creates a 3D scatterplot of
	the observation locations, color-coded to the observation values.
A second axis will also plot the QC values if desired.





~~~
fname         = ‘POP11/obs_epoch_011.nc’;
region        = [0 360 -90 90 -Inf Inf];
ObsTypeString = ‘AIRCRAFT_U_WIND_COMPONENT’;
CopyString    = ‘NCEP BUFR observation’;
QCString      = ‘DART quality control’;
maxgoodQC     = 2;
verbose       = 1;   % > 0 means ‘print summary to command window’
twoup         = 1;   % > 0 means ‘use same Figure for QC plot’
bob = plot_obs_netcdf(fname, ObsTypeString, region, CopyString, …


QCString, maxgoodQC, verbose, twoup);




~~~

<img src=”../images/science_nuggets/plot_obs_netcdf_example.png” height=”200” alt=”plot_obs_netcdf” />


	[plot_obs_netcdf_diffs.m](../../diagnostics/matlab/plot_obs_netcdf_diffs.m) creates a 3D
	scatterplot of the difference between two ‘copies’ of an observation.





~~~
fname         = ‘POP11/obs_epoch_011.nc’;
region        = [0 360 -90 90 -Inf Inf];
ObsTypeString = ‘AIRCRAFT_U_WIND_COMPONENT’;
CopyString1   = ‘NCEP BUFR observation’;
CopyString2   = ‘prior ensemble mean’;
QCString      = ‘DART quality control’;
maxQC         = 2;
verbose       = 1;   % > 0 means ‘print summary to command window’
twoup         = 0;   % > 0 means ‘use same Figure for QC plot’
bob = plot_obs_netcdf_diffs(fname, ObsTypeString, region, CopyString1, CopyString2, …


QCString, maxQC, verbose, twoup);




~~~

<img src=”../images/science_nuggets/plot_obs_netcdf_diffs_example.png” height=”200” alt=”plot diffs” />


	[plot_wind_vectors.m](../../diagnostics/matlab/plot_wind_vectors.m) creates a 2D ‘quiver’
	plot of a wind field. This function is in the matlab/private
directory - but if you want to use it, you can move it out.
I find it has very little practical value.





~~~
fname       = ‘obs_epoch_001.nc’;
platform    = ‘SAT’;    % usually ‘RADIOSONDE’, ‘SAT’, ‘METAR’, …
CopyString  = ‘NCEP BUFR observation’;
QCString    = ‘DART quality control’;
region      = [210 310 12 65 -Inf Inf];
scalefactor = 5;     % reference arrow magnitude
bob = plot_wind_vectors(fname, platform, CopyString, QCString, …


‘region’, region, ‘scalefactor’, scalefactor);




~~~

<img src=”../images/science_nuggets/plot_wind_vectors_example_small.png” height=”200” alt=”plot wind vectors” />


	[link_obs.m](../../diagnostics/matlab/link_obs.m) creates multiple figures that have linked
	attributes. This is my favorite function. Click on the little paintbrush
icon in any of the figure frames and select all the observations with
DART QC == 4 in one window, and those same observations are highlighted
in all the other windows (for example). The 3D scatterplot can be
rotated around with the mouse to really pinpoint exactly where the
observations are getting rejected, for example. All the images are
links to larger versions - the image on the right has the MATLAB® call.
If the data browser (the spreadsheet-like panel) is open, the selected
observations get highlighted there too …





<img src=”../images/science_nuggets/link_obs_example_F2.png” height=”200” alt=”link_obs frame2” />
<img src=”../images/science_nuggets/link_obs_example_F1.png” height=”200” alt=”link_obs frame1” />
<img src=”../images/science_nuggets/link_obs_example_F0.png” height=”200” alt=”link_obs frame0” />


	[ObsTimeCheck.m](../../diagnostics/matlab/ObsTimeCheck.m) is an example of a trivial little
	script to wrap around plot_obs_netcdf.m that allows you to explorex
the spatial distribution of your observation sequences. Since
obs_seq_to_netcdf doesn’t know anything about assimilation windows;
the idea is to create separate netCDF files for each assimilation window
and then explore a sequence of windows. Since ObsTimeCheck.m is
under version control, you should feel free to edit it/modify it to
your heart’s desire. If there are no observations of that type in a
particular assimilation window, the MATLAB® Command window will have
a comment to that effect.





<img src=”../images/science_nuggets/ObsTimeCheck_Fig1.png” height=”200” alt=”time_check 1” />
<img src=”../images/science_nuggets/ObsTimeCheck_Fig2.png” height=”200” alt=”time_check 2” />
<img src=”../images/science_nuggets/ObsTimeCheck_Fig3.png” height=”200” alt=”time_check 3” />
<img src=”../images/science_nuggets/ObsTimeCheck_Fig4.png” height=”200” alt=”time_check 4” />

<span id=”obs_diag_output_explanation” class=”anchor”></span> [](#obs_diag_output_explanation)



#### Understanding what’s in obs_diag_output.nc

After you create obs_diag_output.nc with
[obs_diag](Manhattan/assimilation_code/programs/obs_diag/threed_sphere/obs_diag.html)
it is important to understand what is contained in
obs_diag_output.nc. Remember, this is just a dump of the header of the file!

~~~
[work]$ ncdump -v CopyMetaData obs_diag_output.nc
netcdf obs_diag_output {
dimensions:


copy = 21 ;
obstypes = 78 ;
region = 1 ;
surface = 1 ;
undef = 1 ;
mlevel = 11 ;
mlevel_edges = 12 ;
plevel = 11 ;
plevel_edges = 12 ;
hlevel = 11 ;
hlevel_edges = 12 ;
time = UNLIMITED ; // (6 currently)
bounds = 2 ;
stringlength = 32 ;
rank_bins = 97 ;





	variables:
	
	int copy(copy) ;
	copy:explanation = “see CopyMetaData” ;



	int obstypes(obstypes) ;
	obstypes:explanation = “see ObservationTypes” ;



	int region(region) ;
	region:long_name = “model region” ;
region:units = “nondimensional” ;
region:valid_range = 1, 1 ;



	int mlevel(mlevel) ;
	mlevel:long_name = “model level” ;
mlevel:units = “model level” ;
mlevel:axis = “Z” ;
mlevel:valid_range = 1, 11 ;



	float mlevel_edges(mlevel_edges) ;
	mlevel_edges:long_name = “model level edges” ;
mlevel_edges:units = “model level” ;
mlevel_edges:axis = “Z” ;
mlevel_edges:valid_range = 0.5, 11.5 ;



	float plevel(plevel) ;
	plevel:long_name = “pressure bin midpoints” ;
plevel:units = “hPa” ;
plevel:axis = “Z” ;
plevel:valid_range = 100., 1000. ;



	float plevel_edges(plevel_edges) ;
	plevel_edges:long_name = “pressure bin edges” ;
plevel_edges:units = “hPa” ;
plevel_edges:axis = “Z” ;
plevel_edges:valid_range = 75., 1025. ;



	float hlevel(hlevel) ;
	hlevel:long_name = “height bin midpoints” ;
hlevel:units = “m” ;
hlevel:axis = “Z” ;
hlevel:valid_range = 1000., 11000. ;



	float hlevel_edges(hlevel_edges) ;
	hlevel_edges:long_name = “height bin edges” ;
hlevel_edges:units = “m” ;
hlevel_edges:axis = “Z” ;
hlevel_edges:valid_range = 500., 11500. ;



	int bounds(bounds) ;
	bounds:valid_range = 1, 2 ;



	double time(time) ;
	time:standard_name = “time” ;
time:long_name = “temporal bin midpoints” ;
time:units = “days since 1601-1-1” ;
time:calendar = “Gregorian” ;
time:axis = “T” ;
time:bounds = “time_bounds” ;
time:valid_range = 148880.5, 148885.5 ;



	double time_bounds(time, bounds) ;
	time_bounds:long_name = “temporal bin edges” ;
time_bounds:units = “days since 1601-1-1” ;
time_bounds:calendar = “Gregorian” ;
time_bounds:valid_range = 148880.000011574, 148886. ;



	char region_names(region, stringlength) ;
	region_names:long_name = “region names” ;



	char CopyMetaData(copy, stringlength) ;
	CopyMetaData:long_name = “quantity names” ;



	char ObservationTypes(obstypes, stringlength) ;
	ObservationTypes:long_name = “DART observation types” ;
ObservationTypes:comment = “table relating integer to observation type string” ;



	int rank_bins(rank_bins) ;
	rank_bins:long_name = “rank histogram bins” ;
rank_bins:comment = “position of the observation among the sorted noisy ensemble members” ;



	float RADIOSONDE_U_WIND_COMPONENT_guess(time, copy, plevel, region) ;
	RADIOSONDE_U_WIND_COMPONENT_guess:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_guess:missing_value = -888888.f ;





int   RADIOSONDE_U_WIND_COMPONENT_guess_RankHi(time, rank_bins, plevel, region) ;






	…
	
	float AIRCRAFT_U_WIND_COMPONENT_guess(time, copy, plevel, region) ;
	AIRCRAFT_U_WIND_COMPONENT_guess:_FillValue = -888888.f ;
AIRCRAFT_U_WIND_COMPONENT_guess:missing_value = -888888.f ;





int   AIRCRAFT_U_WIND_COMPONENT_guess_RankHist(time, rank_bins, plevel, region) ;






	…
	
	float RADIOSONDE_U_WIND_COMPONENT_analy(time, copy, plevel, region) ;
	RADIOSONDE_U_WIND_COMPONENT_analy:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_analy:missing_value = -888888.f ;










	…
	
	float AIRCRAFT_U_WIND_COMPONENT_analy(time, copy, plevel, region) ;
	AIRCRAFT_U_WIND_COMPONENT_analy:_FillValue = -888888.f ;
AIRCRAFT_U_WIND_COMPONENT_analy:missing_value = -888888.f ;










	…
	
	float RADIOSONDE_U_WIND_COMPONENT_VPguess(copy, plevel, region) ;
	RADIOSONDE_U_WIND_COMPONENT_VPguess:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_VPguess:missing_value = -888888.f ;










	…
	
	float RADIOSONDE_U_WIND_COMPONENT_VPanaly(copy, plevel, region) ;
	RADIOSONDE_U_WIND_COMPONENT_VPanaly:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_VPanaly:missing_value = -888888.f ;










…


	// global attributes:
	:creation_date = “YYYY MM DD HH MM SS = 2011 03 18 13 37 34” ;
:obs_diag_source = “URL: blah_blah_blah/diagnostics/threed_sphere/obs_diag.html $” ;
:obs_diag_revision = “$Revision$” ;
:obs_diag_revdate = “$Date$” ;
:bias_convention = “model - observation” ;
:horizontal_wind = “vector wind derived from U,V components” ;
:horizontal_wind_bias = “definition : sum[sqrt(u**2 + v**2) - obsspeed]/nobs” ;
:horizontal_wind_rmse = “definition : sqrt(sum[(u-uobs)**2 + (v-vobs)**2]/nobs)” ;
:horizontal_wind_spread = “definition : sqrt(sum[var(u) + var(v)]/nobs)” ;
:DART_QCs_in_histogram = 0, 1, 2, 3 ;
:outliers_in_histogram = “FALSE” ;
:first_bin_center = 2008, 8, 15, 12, 0, 0 ;
:last_bin_center = 2008, 8, 20, 12, 0, 0 ;
:bin_separation = 0, 0, 1, 0, 0, 0 ;
:bin_width = 0, 0, 1, 0, 0, 0 ;
:time_to_skip = 0, 0, 0, 0, 0, 0 ;
:max_num_bins = 1000 ;
:rat_cri = 5000. ;
:input_qc_threshold = 3. ;
:lonlim1 = 0. ;
:lonlim2 = 360. ;
:latlim1 = -90. ;
:latlim2 = 90. ;
:obs_seq_file_001 = “/ptmp/thoar/HuiGPS/08_01/obs_seq.final” ;








…

data:


CopyMetaData =
“Nposs                           “,
“Nused                           “,
“NbigQC                          “,
“NbadIZ                          “,
“NbadUV                          “,
“NbadLV                          “,
“rmse                            “,
“bias                            “,
“spread                          “,
“totalspread                     “,
“NbadDARTQC                      “,
“observation                     “,
“ens_mean                        “,
“N_DARTqc_0                      “,
“N_DARTqc_1                      “,
“N_DARTqc_2                      “,
“N_DARTqc_3                      “,
“N_DARTqc_4                      “,
“N_DARTqc_5                      “,
“N_DARTqc_6                      “,
“N_DARTqc_7                      ” ;





}

There are many more variables in this particular netCDF file -
indicated by the ‘…’ (the ellipsis).
Every observation type is preserved in its own set of variables with the
following suffixes:


suffix     | description                                 |

———- | ——————————————- |

_guess    | prior, forecast                             |

_analy    | posterior, analysis                         |

_VPguess  | vertical profile only - prior, forecast     |

_VPanaly  | vertical profile only - posterior, analysis |

_RankHist | rank histogram - prior                      |




	What is really important to note is that each observation variable has a
	copy dimension - and each copy description is contained in the
CopyMetaData variable. A dump of that variable provides information
about what quantities are directly available. In the above example, the
rmse is copy 7 . You should never assume this information, you
should always check the CopyMetaData variable to find the appropriate
copy index. Let’s look at the RADIOSONDE_U_WIND_COMPONENT_guess
variable in the example. It has 4 dimensions:





[time, copy, plevel, region]. Since ‘plevel’ is one of the
dimensions, the appropriate levels are defined by the coordinate
variable of the same name. The RADIOSONDE_U_WIND_COMPONENT_VPguess
variable has 3 dimensions: [copy, plevel, region]. The ‘time’
dimension has been averaged out such that a single vertical
profile (VP) is defined for the entire timeframe specified in the
namelist. If I were a better man, I’d put the averaging interval in the
variable metadata to have a hope of complying with convention; instead,
it is only in the global metadata for the entire netCDF file as
first_bin_center, last_bin_center, and time_to_skip. Add the
time_to_skip to the first_bin_center to derive the start of the
averaging period. This allows one to ignore the effects of spinup.

The RADIOSONDE_U_WIND_COMPONENT_guess_RankHi variable name has
been cut short by the netCDF restriction that variable names can only
contain 40 characters. The _RankHist variables are only present if
the input obs_seq.final files have multiple ensemble members present.
You cannot derive this information unless the assimilation was performed
with filter_nml:num_output_obs_members equal to something like the
ensemble size.

<span id=”ncview_histogram” class=”anchor”></span> [](#ncview_histogram)



#### Viewing the rank histogram information with ‘ncview’

After you create obs_diag_output.nc with obs_diag you can view
the rank histograms in the following way:

> ncview obs_diag_output.nc

Note that in this particular file, there are forty-seven 3D variables.
Pick one. In this case, I selected AIRCRAFT_U_WIND_COMPONENT_guess_RankHist

<img src=”../images/science_nuggets/ncview_histogram_0.png” alt=”xxxx”>

Navigate to the time of interest (these are the arrows next to the QUIT
button.) If ncview was built with udunits support, the actual
calendar dates and times should be shown next to the frame counter. That
should generate something like the graphic on the right below. Since the
default axes are (Y == histogram_bins, X == levels) and there are many
more ensemble members (96) than vertical levels (20) in this netCDF
file, the graphic appears tall and narrow.

<img src=”../images/science_nuggets/ncview_histogram_1.png” alt=”xxxx”>

Click anywhere on the graphic and something like the following is
displayed:

<img src=”../images/science_nuggets/ncview_histogram_2.png” alt=”xxxx”>

Change the “X Axis:” to “rank_bins” and a new graphic will display the
rank histogram.

<img src=”../images/science_nuggets/ncview_histogram_3.png” alt=”xxxx”>

If you continue to click on the “tall,skinny” graphic, the histogram for
that level will be added to the rank histogram window. Remember, levels
are along the X axis on the “tall,skinny” graphic. Viola’!

<span id=”ss_diagnostics”        class=”anchor”></span> [](#ss_diagnostics)
<span id=”ss_diagnostics_matlab” class=”anchor”></span> [](#ss_diagnostics_matlab)



### State-Space diagnostics for High-order Models.

Vary model-by-model. This section is under construction.

### State-Space diagnostics for Low-order Models.

#### MATLAB®

There are a set of MATLAB® functions to help explore the assimilation
performance in state-space, which is very useful for OSSE’s (i.e. when
you know the true model state). The general guideline here is that
anything that computes an ‘error’ requires the truth. There are some
functions that work without a true state.

In order to use any of these functions, the scripts need to know how to
interpret the layout of the netCDF file - which is usually
model-dependent. See the section on
[Adding MATLAB® support for your own model](Models.md#model_matlab_support)
if you are not using one of the supported DART models.

The state-space functions are in the `DART/diagnostics/matlab`
directory. They all have the expected ‘help’ file accessible by simply
typing help [function_of_interest] at the Matlab prompt.



|     |



— | — |

plot_total_err.m | plots the evolution of the error (un-normalized) and ensemble spread of all state variables. |

plot_bins.m | plots the rank histograms for a set of state variables. |

plot_ens_time_series.m | plots the evolution of a set of state variables - all ensemble members, the ensemble mean (and Truth, if available). |

plot_ens_mean_time_series.m | plots the evolution of a set of state variables - just the ensemble mean (and Truth, if available). |

plot_ens_err_spread.m | plots the evolution of the ensemble error and spread for a select set of state variables. |

plot_correl.m | plots the correlation through time of a state variable and the rest of the state. |

plot_var_var_correl.m | plots the correlation between two variables at a particular location. |

plot_jeff_correl.m | plots the correlation through time of a state variable at a particular time and any state variable. |

plot_sawtooth.m | plots the trajectory of any set of state variables highlighting the assimilation ‘increment’. |

plot_phase_space.m | plots the trajectory of any two or three state variables. The classic attractor diagram. |

plot_smoother_err.m | plots the error of the ensemble smoother - which uses observations in the future as well as the present. |



netCDF files are self-describing, so it is imperative that you
understand the structure of the netCDF files and variables. fact that it
might be the ensemble mean, the ensemble spread, ensemble member 43, the
inflation values … a whole host of possibilities. For instance:

~~~
0[1020] swordfish:models/wrf/work % ncdump -v member,MemberMetadata preassim.nc
netcdf preassim {
dimensions:


metadatalength = 64 ;
member = 3 ;
time = UNLIMITED ; // (1 currently)
NMLlinelen = 129 ;
NMLnlines = 203 ;
domain = 1 ;
west_east_d01 = 267 ;
west_east_stag_d01 = 268 ;
south_north_d01 = 215 ;
south_north_stag_d01 = 216 ;
bottom_top_d01 = 35 ;
bottom_top_stag_d01 = 36 ;





	variables:
	

	int member(member) ;
	member:long_name = “ensemble member or copy” ;
member:units = “nondimensional” ;
member:valid_range = 1, 100 ;



	char MemberMetadata(member, metadatalength) ;
	MemberMetadata:long_name = “Metadata for each copy/member” ;





…
float U_d01(time, member, bottom_top_d01, south_north_d01, west_east_stag_d01) ;
…




member = 1, 2, 3 ;

MemberMetadata =
“ensemble member      1                                          “,
“ensemble member      2                                          “,
“ensemble member      3                                          “,








}

<span id=”alt_diagnostics”          class=”anchor”></span> [](#alt_diagnostics)
<span id=”ss_diagnostics_nonmatlab” class=”anchor”></span> [](#ss_diagnostics_nonmatlab)

#### Non-MATLAB® state-space diagnostics

The innovations to the model state are easy to derive. Use the
[NCO Operator](http://nco.sourceforge.net/) ncdiff to difference the two
DART diagnostic netCDF files to create the innovations. Be sure to check
the CopyMetaData variable to figure out what copy is of interest.
Then, use ncview to explore the innovations or the inflation values or …

If the assimilation used state-space inflation, the inflation fields
will be added as additional ‘copies’. A sure sign of trouble is if the
inflation fields grow without bound. As the observation network changes,
expect the inflation values to change.

The only other thing I look for in state-space is that the increments
are ‘reasonable’. As the assimilation ‘burns in’, the increments are
generally larger than increments from an assimilation that has been
cycling for a long time. If the increments keep getting bigger, the
ensemble is continually drifting away from the observation. Not good. In
ncview, it is useful to navigate to the copy/level of interest and
re-range the data to values appropriate to the current data and then hit
the ‘>>’ button to animate the image. It should be possible to get a
sense of the magnitude of the innovations as a function of time.

Example from a model of intermediate complexity: the bgrid model.
I ran a perfect model experiment with the bgrid model in the
DART-default configuration and turned on some adaptive inflation for
this example. To fully demonstrate the adaptive inflation, it is useful
to have an observation network that changes through time. I created two
observation sequence files: one that had a single
‘RADIOSONDE_TEMPERATURE’ observation at the surface with an observation
error variance of 1.5 degrees Kelvin - repeated every 6 hours for 6 days
(24 timesteps); and one that had 9 observations locations clustered in
about the same location that repeated every 6 hours for 1.5 days (6
timesteps). I merged the two observation sequences into one using
[obs_sequence_tool](https://ncar.github.io/DART/api/v0.0.6/program/obs_sequence_tool.html)
and ran them through perfect_model_obs to derive the observation
values and create an obs_seq.out file to run through filter.
NOTE: Other models may have their ensemble means and spreads and
inflation values in separate files. [See the table of possible
filenames.](#FilenameTable)

~~~
0[1074] models/bgrid_solo/work %  ncdiff analysis.nc preassim.nc Innov.nc
0[1075] models/bgrid_solo/work %  ncview preassim.nc &
0[1076] models/bgrid_solo/work %  ncview Innov.nc &
0[1077] models/bgrid_solo/work %  ncdump -v MemberMetadata preassim.nc
netcdf preassim {
dimensions:


metadatalength = 64 ;
member = 20 ;
time = UNLIMITED ; // (24 currently)
NMLlinelen = 129 ;
NMLnlines = 303 ;
StateVariable = 28200 ;
TmpI = 60 ;
TmpJ = 30 ;
lev = 5 ;
VelI = 60 ;
VelJ = 29 ;





	variables:
	
	char MemberMetadata(member, metadatalength) ;
	MemberMetadata:long_name = “Metadata for each copy/member” ;





…
double ps(time, member, TmpJ, TmpI) ;


ps:long_name = “surface pressure” ;
ps:units = “Pa” ;
ps:units_long_name = “pascals” ;





	double t(time, member, lev, TmpJ, TmpI) ;
	t:long_name = “temperature” ;
t:units = “degrees Kelvin” ;



	double u(time, member, lev, VelJ, VelI) ;
	u:long_name = “zonal wind component” ;
u:units = “m/s” ;



	double v(time, member, lev, VelJ, VelI) ;
	v:long_name = “meridional wind component” ;
v:units = “m/s” ;





double ps_mean(time, TmpJ, TmpI) ;        The ensemble mean   is now a separate variable.
double t_mean(time, lev, TmpJ, TmpI) ;    The ensemble spread is now a separate variable.
double u_mean(time, lev, VelJ, VelI) ;    If I was using inflation, they would also be separate variables.
double v_mean(time, lev, VelJ, VelI) ;
double ps_sd(time, TmpJ, TmpI) ;
double t_sd(time, lev, TmpJ, TmpI) ;
double u_sd(time, lev, VelJ, VelI) ;
double v_sd(time, lev, VelJ, VelI) ;



	data:
	MemberMetadata =
“ensemble member      1 “,
“ensemble member      2 “,
“ensemble member      3 “,
“ensemble member      4 “,
“ensemble member      5 “,
“ensemble member      6 “,
“ensemble member      7 “,
“ensemble member      8 “,
“ensemble member      9 “,
“ensemble member     10 “,
“ensemble member     11 “,
“ensemble member     12 “,
“ensemble member     13 “,
“ensemble member     14 “,
“ensemble member     15 “,
“ensemble member     16 “,
“ensemble member     17 “,
“ensemble member     18 “,
“ensemble member     19 “,
“ensemble member     20 ” ;








}

<img src=”../images/science_nuggets/bgrid_prior_inflation_main.png” alt=”xxxx”>

<img src=”../images/science_nuggets/bgrid_prior_inflation_image.png” alt=”xxxx”>

<img src=”../images/science_nuggets/bgrid_prior_inflation_timeseries.png” alt=”xxxx”>

This is an exploration of the preassim.nc file. Note that I selected
the ‘t’ field, turned the coastlines ‘off’ under the ‘Opts’ button,
used the ‘Repl’ instead of ‘Bi-lin’ (to more faithfully represent the
model resolution), navigated to copy 23 of 24 (in this case, the
**inflation mean*)* select the inflation mean variable of your
choice and advanced to the last timestep. The image plot is pretty
boring, but does indicate that the inflation values are restricted to
where I put the observations. Right-clicking on the ‘Range’ button
automatically re-ranges the colorbar to the min/max of the current data.
Clicking on any location generates a time series figure.

<img src=”../images/science_nuggets/bgrid_innov_ncview_main.png” alt=”xxxx”>

<img src=”../images/science_nuggets/bgrid_innov_ncview_image.png” alt=”xxxx”>

<img src=”../images/science_nuggets/bgrid_innov_ncview_timeseries.png” alt=”xxxx”>

This is an exploration of the Innov.nc file as created by ncdiff.
Note that the titles are somewhat misleading because they reflect
information from the first file given to ncdiff. This time I left the
rendering as ‘Bi-lin’ (which obfuscates the model resolution),
navigated to copy 1 of 24 (in this case, the **ensemble mean*)*
selected the t_mean variable and advanced to the 6th timestep.
Right-click on the ‘Range’ button to reset the colorbar. The image plot
confirms that the innovations are restricted to a local region. Clicking
on any location generates a time series.

<img src=”../images/science_nuggets/bgrid_innov_ncview_main_u.png” alt=”xxxx”>

<img src=”../images/science_nuggets/bgrid_innov_ncview_image_u.png” alt=”xxxx”>

<img src=”../images/science_nuggets/bgrid_innov_ncview_timeseries_u.png” alt=”xxxx”>

This is fundamentally the same as the previous panel except that I have
now selected the ‘*u*’ u_mean variable. Despite the fact the
observations were only of ‘t’, the assimilation has generated
(rightly so) increments to the ‘u’ state variable.
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# Getting Started with DART

The Data Assimilation Research Testbed (DART) is an open-source, freely
available community facility for ensemble data assimilation (DA) developed and
maintained by the
[Data Assimilation Research Section (DAReS)](https://www.image.ucar.edu/DAReS/)
at the [National Center for Atmospheric Research (NCAR)](https://ncar.ucar.edu)
and released under the open-source
[Apache License v2.0](https://www.apache.org/licenses/LICENSE-2.0).
DART provides modelers, observational scientists, and geophysicists with
powerful, flexible DA tools that are easy to use and can be customized to
support efficient and reliable DA applications. DART is primarily oriented for
DA research but has also been used in operational settings. DART is a software
environment that makes it easy to explore a variety of data assimilation
methods and observations with different numerical models and is designed to
facilitate the combination of assimilation algorithms, models, and real (as well
as synthetic) observations to allow increased understanding of all three. DART
includes extensive documentation, a comprehensive tutorial, and a variety of
models and observation sets that can be used to introduce new users or graduate
students to ensemble DA. DART also provides a framework for developing, testing,
and distributing advances in ensemble DA to a broad community of users by
removing the implementation-specific peculiarities of one-off DA systems.

DART is intended for use by DA beginners as well as experts, students as well
as teachers, national labs and centers as well as university research labs, and
everything in between; thus, different users may have different goals in
“getting started.” We have therefore broken the process into the following
sections, each of which can be read independently:


	[Quick-start instructions for the impatient](#QuickStart)


	
	[More detailed DART setup instructions](#DetailedSetup)
	
	[On conventions used within this document](#conventions).


	[Check your system requirements](#system).


	[Determine which F90 compiler is available](#fortran90).


	[Determine the location of (or build) the netCDF library](#netCDFlib).


	[Download the DART software](#download).


	[Building and testing DART](#testing).


	[Verifying the DART installation](#verify).










	
	[What is data assimilation?](#WhatIsDA)
	
	[Introduction to ensemble DA](#EnsDAIntro)


	[The Lorenz 63 model: what is it and why should we care?](#Lorenz63)


	[Data assimilation in DART using the Lorenz 63 model](#DAForLorenz63)










	
	[What is DART?](#WhatIsDART)
	
	[Why should I use DART for my project?](#whyDart)


	[A brief history of DART](#dartHistory)


	[High-level DA workflows in DART](#dartWorkflow)


	[DART’s design philosophy](#dartDesign)


	[Important capabilities of DART](#dartCapabilities)


	[How to cite DART](#citeDart)










	
	[How do I run DART with my model?](#RunWithMyModel)
	
	[Required model_mod routines](#requiredRoutines)


	[Suggestions for a “simple” model](#simpleModel)


	[Suggestions for a “complex” model](#complexModel)


	[How to test your model_mod routines](#howToTestModelMod)










	
	[How do I add my observations to DART?](#RunWithMyObs)
	
	[Background on DART observations](#obsBackground)


	[Simple observation definitions](#simpleObs)


	[Obs definitions for observations needing special handling](#complexObs)


	[Example observation definition](#exampleObsDef)


	[Observation sequence file](#obsSeqFile)










	
	[How would I use DART for teaching students and/or myself?](#DartForEducation)
	
	[The DART tutorial](#dartTutorial)


	[DART_LAB](#dartLab)










	[How can I contribute to DART?](#ContributeToDart)




—
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## Quick-start instructions for the impatient

[[top](#top)]

This section details how to get started with DART as quickly as possible. This
section may be for you if you want to see that DART works before spending a lot
of time learning about the details. However, if this level of detail is too
sparse for you or if you run into any problems, please refer to
[More detailed DART setup instructions](#DetailedSetup).

The DART source code is distributed on the GitHub repository
[NCAR/DART](https://github.com/NCAR/DART)
with the documentation served through GitHub Pages at
[https://dart.ucar.edu](https://dart.ucar.edu).

Go to https://github.com/NCAR/DART and clone the repository or get the ZIP file
according to your preference. Take note of the directory you installed into,
which is referred to as DARTHOME below.


	exclamation

	IMPORTANT: If you are interested in contributing to DART,





see [How can I contribute to DART?](#ContributeToDart) for more information.

Your DARTHOME directory will now contain the latest release of DART.

Go into the build_templates subdirectory and copy over the closest mkmf.template.<compiler system> file into mkmf.template.

Edit mkmf.template to set the NETCDF directory location if not in
/usr/local or comment it out and set $NETCDF in your environment.


	warning

	WARNING: Your netCDF library must have been compiled with the





same compiler (including version) that you will use to compile DART and also
must include the F90 interfaces. In practice this means that even if you have a
netCDF distribution on your system, you may need to recompile netCDF in a
separate location to match the compiler you will use for DART.

If you are interested in running bgrid_solo, cam-fv, or
testing the NCEP/prep_bufr observation converter, you will need to download a
supplemental archive file. There are several large files that are needed to run
some of these DART tests and examples that are not included on Github in order
to keep the repository as small as possible. These files are available at:


Release                | Size   | Filename  |

:————–        | :—– | :——– |

“Manhattan”        |  189M  | [Manhattan_large_files.tar.gz](https://www.image.ucar.edu/pub/DART/Release_datasets/Manhattan_large_files.tar.gz) |

“wrf-chem.r13172”  |  141M  | [wrf-chem.r13172_large_files.tar.gz](https://www.image.ucar.edu/pub/DART/Release_datasets/wrf-chem.r13172_large_files.tar.gz) |

“Lanai”            |  158M  | [Lanai_large_files.tar.gz](https://www.image.ucar.edu/pub/DART/Release_datasets/Lanai_large_files.tar.gz) |

“Kodiak”           |  158M  | [Kodiak_large_files.tar.gz](https://www.image.ucar.edu/pub/DART/Release_datasets/Kodiak_large_files.tar.gz) |

“Jamaica”          |   32M  | [Jamaica_large_files.tar.gz](https://www.image.ucar.edu/pub/DART/Release_datasets/Jamaica_large_files.tar.gz) |

“Hawaii”           |   32M  | [Hawaii_large_files.tar.gz](https://www.image.ucar.edu/pub/DART/Release_datasets/Hawaii_large_files.tar.gz) |



If so desired, download the appropriate tar file and untar it into your
DARTHOME directory. Ignore any warnings about
`
tar: Ignoring unknown extended header keyword
`

You are now ready to start building the DART code. Go into
models/lorenz_63/work and run quickbuild.csh.

> cd models/lorenz_63/work
> ./quickbuild.csh

If it compiles, :tada:  If not, see the next section for more information.
Run this series of commands to do a very basic test:

> ./perfect_model_obs
> ./filter

If that runs, :tada: again!  Finally, if you have Matlab installed on
your system add ‘$DARTHOME/diagnostics/matlab’ to your matlab search path with
the command

> addpath(‘path_to_dart/diagnostics/matlab’,’-BEGIN’)

replacing path_to_dart with your actual DARTHOME installation directory.

In Matlab, run the plot_total_err diagnostic script while in the
models/lorenz_63/work directory.  If the output plots and looks
reasonable (error level stays around 2 and doesn’t grow unbounded)
you’re great!  Congrats.

If you are planning to run one of the models that uses MPI and want to
use the Lorenz 63 model as a test, run `./quickbuild.csh -mpi`.
It will build filter and any other MPI-capable executables with MPI.


	warning

	WARNING: The underlying compiler used by mpif90 must match the





same compiler that you use for DART and netCDF.

If any of these steps fail or you don’t know how to do them, you can see
much more detailed instructions in the next section that hopefully
should get you over any bumps you encountered in the process.

—
<span id=”DetailedSetup” class=”anchor”></span> [](#DetailedSetup)

## More detailed DART setup description

[[top](#top)]

This section is a more detailed description of the steps in the previous
section, [Quick-start instructions for the impatient](#QuickStart). In
particular, you can refer to these instructions if anything in the previous
section failed or if you want a more complete picture of how DART is configured.

The getting started process is summarized in the following steps:


	[On conventions used within this document](#conventions).


	[Check your system requirements](#system).


	[Determine which F90 compiler is available](#fortran90).


	[Determine the location of (or build) the netCDF library](#netCDFlib).


	[Download the DART software](#download).


	[Modify certain DART files to reflect the available F90 compiler and location of the appropriate libraries](#customizations).


	[Build the executables](#building).


	[Verify the DART installation](#verify).




### On conventions used within this document

This getting started document is intended to be used as a reference by users of
different levels and backgrounds. By design, this page is mostly
“self-contained” as a single page so that users can navigate through the
document links without becoming lost. Some sections contain helpful
information, while others contain step-by-step instructions to run programs
or shell commands.

In order to make the tutorial-style sections more clear, the following
conventions are used within this document:

Commands to be typed at the command line will appear in blockquote. For example:

> my_command.exe run_it.nml

The contents of a file will be enclosed in a box as follows (for some hypothetical namelist file):

~~~
&hypothetical_nml


obs_seq_in_file_name = “obs_seq.in”,
obs_seq_out_file_name = “obs_seq.out”,
init_time_days = 0,
init_time_seconds = 0,
output_interval = 1




&end
~~~

The names of files or environment variables will appear in a code-block
as in filename.

The names of executables will be italicized (although note that italic
will also be used for emphasis where there is no potential for confusion).


	dart

	NOTE: “pro-tip” information to note will be written like this.



	exclamation

	IMPORTANT: important information will be written like this.



	warning

	WARNING: don’t miss out on warnings which will be written like this.





### System Requirements

The DART software is intended to compile and run on many different
Unix/Linux operating systems with little to no change. At this point we have no
plans to port DART to Windows machines, although Windows 10
users may be interested in the free
[Windows Subsystem For Linux](https://docs.microsoft.com/en-us/windows/wsl/about)
which allows developers to “run a GNU/Linux environment &mdash; including most
command-line tools, utilities, and applications &mdash; directly on Windows,
unmodified, without the overhead of a virtual machine” (see
<https://docs.microsoft.com/en-us/windows/wsl/about> for more details)


	warning

	DISCLAIMER: we have tried to make the DART code as portable as





possible, but we do not have access to all compilers on all platforms, so
unfortunately we cannot guarantee that the code will work correctly on your
particular system. We are genuinely interested in your experience building the
system, so we welcome you to send us an email with your experiences at
dart @ ucar .edu, which we will endeavor to incorporate into future versions of
this guide.

Minimally, you will need:


	[a Fortran90 compiler](#fortran90),


	the [netCDF libraries](http://www.unidata.ucar.edu/software/netcdf/)
built with the F90 interface,


	perl (just about any version),


	an environment that understands csh, tcsh, sh, and ksh


	the long-lived Unix build tool make


	and up to 1 Gb of disk space for the DART distribution.




History has shown that it is a very good idea to remove the stack and heap
limits in your run-time environment with the following terminal commands:

> limit stacksize unlimited
> limit datasize unlimited

Additionally, the following tools have proven to be nice (but are not
required to run DART):


	[ncview](http://meteora.ucsd.edu/~pierce/ncview_home_page.html): a
great visual browser for netCDF files.


	[the netCDF Operators (NCO)](http://nco.sourceforge.net/): tools to
perform operations on netCDF files like concatenating, slicing, and
dicing


	Some sort of MPI environment. In other words, DART does not come
with MPICH, LAM-MPI, or OpenMPI, but many users of DART rely on these
MPI distributions to run DART in a distributed-memory parallel setting. In
order to use MPI with DART, please refer to [the DART MPI introduction](dart_mpi.md).


	If you want to use the DART diagnostic scripts, you will need a
basic MATLAB® installation. No additional toolboxes are required, and no
third-party toolboxes are required.






<span id=”fortran90” class=”anchor”></span> [](#fortran90)

### Requirements: a Fortran90 compiler

The DART software is written in standard Fortran 90, with no compiler-specific
extensions. It has been compiled and run with several versions of each of the
following:
* [GNU Fortran Compiler (“gfortran”)](http://gcc.gnu.org/fortran) (free)
* [Intel Fortran Compiler for Linux and OSX](http://software.intel.com/en-us/intel-composer-xe)
* [IBM XL Fortran Compiler](http://www-01.ibm.com/software/awdtools/fortran/)
* [Portland Group Fortran Compiler](http://www.pgroup.com/)
* [Lahey Fortran Compiler](http://www.lahey.com/)
* [NAG Fortran compiler](https://www.nag.com/nag-compiler)
* [PathScale Fortran compiler](https://en.wikipedia.org/wiki/PathScale)

Since recompiling the code is a necessity to experiment with different models,
there are no DART binaries to distribute. If you are unfamiliar with Fortran
and/or wonder why we would choose this language, see
[Why Fortran?](#whyFortran) for more information.

<span id=”netCDFlib” class=”anchor”></span> [](#netCDFlib)

### Requirements: the netCDF library

DART uses the [netCDF](https://www.unidata.ucar.edu/software/netcdf/)
self-describing data format for storing the results of assimilation experiments.
These files have the extension .nc and can be read by a number of
standard data analysis tools. In particular, DART also makes use of the
F90 netCDF interface which is available through the netcdf.mod
and typesizes.mod modules and the libnetcdf library. Depending on the
version, the libnetcdff library is also often required.

If the netCDF library does not exist on your system, you must build it
(as well as the F90 interface modules).


	warning

	WARNING: You must build netCDF





with the same compiler (including version) you plan to use for compiling DART.
In practice this means that even if you have a netCDF
distribution on your system, you may need to recompile netCDF in a separate
location to match the compiler you will use for DART. The library and
instructions for building the library or installing from a package manager  may
be found at the netCDF home page:
<https://www.unidata.ucar.edu/software/netcdf/>


	exclamation

	IMPORTANT: the normal location for the netCDF Fortran modules





and libraries would be in the include and lib subdirectories of the netCDF
installation. However, different compilers or package managers sometimes
place the modules and/or libraries into non-standard locations. It is required
that both modules and the libraries be present.


	dart

	NOTE: The location of the netCDF library, libnetcdf.a, and the





locations of both netcdf.mod and typesizes.mod will be needed later.
Depending on the version of netCDF and the build options selected, the
Fortran interface routines may be in a separate library named
libnetcdff.a (note the two F’s). In this case both libraries are
required to build executables.

<span id=”download” class=”anchor”></span> [](#download)

### Download DART

The DART source code is distributed on the GitHub repository
[NCAR/DART](https://github.com/NCAR/DART)
with the documentation served through GitHub Pages at
[http://dart.ucar.edu](http://dart.ucar.edu).

Go to https://github.com/NCAR/DART and clone the repository or get the ZIP file
according to your preference. See the
[github help page on cloning](https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository)
for more information on how to clone a repository. Take note of the directory
you installed into,  which is referred to as DARTHOME below.


	exclamation

	IMPORTANT: If you are interested in contributing to DART,





see [How can I contribute to DART?](#ContributeToDart) for more information.
In short, you will need to be familiar with the
[GitHub workflow](https://guides.github.com/introduction/flow/).

Unzip or clone the distribution in your desired directory, which we refer to as
“DARTHOME” in this document. Compiling the code in this tree (as is usually the
case) may require a large amount of additional disk space (up to the 1 Gb
required for DART), so be aware of any disk quota restrictions before
continuing.

<span id=”testing” class=”anchor”></span> [](#testing)

### Building and testing DART

Now that the DART code has been downloaded and the prerequisites have been
verified, you can now begin building and verifying the DART installation.

<span id=”customizations” class=”anchor”></span> [](#customizations)

#### Customizing the build scripts &mdash; overview

DART executable programs are constructed using two tools: mkmf, and
make. The make utility is a very commonly used tool that
requires a user-defined input file (a Makefile) that records dependencies
between different source files. make then performs actions to the source
hierarchy, in order of dependence, when one or more of the source files is
modified. mkmf is a perl script that generates a make input file (named
Makefile) and an example namelist input.nml.<program>_default with
default values.

mkmf (think “make makefile”) requires two separate input files. The
first is a template file which specifies the commands required for a specific
Fortran90 compiler and may also contain pointers to directories containing pre-
compiled utilities required by the DART system. This template file will need to be modified to reflect your system as detailed in the next section.

The second input file is a path_names file which is
supplied by DART and can be used without modification. An mkmf command
is executed which uses the path_names file and the mkmf template file
to produce a Makefile which is subsequently used by the standard
make utility.

Shell scripts that execute the mkmf command for all standard DART
executables are provided with the standard DART distribution. For more
information on the [mkmf](https://github.com/NOAA-GFDL/mkmf) tool please
see the [mkmf documentation](https://extranet.gfdl.noaa.gov/~vb/mkmf.html).

<span id=”template” class=”anchor”></span> [](#template)

#### Building and Customizing the ‘mkmf.template’ file

A series of templates for different compilers/architectures can be found in
the DARTHOME/build_templates directory and have names with extensions
that identify the compiler, the architecture, or both. This is how you
inform the build process of the specifics of your system. Our intent
is that you copy one that is similar to your system into
`DARTHOME/build_templates/mkmf.template` and customize it. For the
discussion that follows, knowledge of the contents of one of these
templates (e.g. DARTHOME/build_templates/mkmf.template.intel.linux) is
needed. Note that only the LAST lines of the file are shown here.
The first portion of the file is a large comment block that provides valuable
advice on how to customize the mkmf template file if needed.


~~~

MPIFC = mpif90
MPILD = mpif90
FC = ifort
LD = ifort
NETCDF = /usr/local
INCS = -I${NETCDF}/include
LIBS = -L${NETCDF}/lib -lnetcdf -lnetcdff
FFLAGS = -O2 $(INCS)
LDFLAGS = $(FFLAGS) $(LIBS)
~~~


variable | value |

:——- | :—- |

FC       | the Fortran compiler |

LD       | the name of the loader; typically, the same as the Fortran compiler |

MPIFC    | the MPI Fortran compiler; see [the DART MPI introduction](dart_mpi.md) for more info|

MPILD    | the MPI loader; see [the DART MPI introduction](dart_mpi.md) for more info|

NETCDF   | the location of your root netCDF installation, which is assumed to contain netcdf.mod and typesizes.mod in the include subdirectory. Note that the value of the NETCDF variable will be used by the “INCS” and “LIBS” variables. |

INCS     | the includes passed to the compiler during compilation. Note you may need to change this if your netCDF includes netcdf.mod and typesizes.mod are not in the standard location under the include subdirectory of NETCDF. |

LIBS     | the libraries passed to “FC” (or “MPIFC”) during compilation. Note you may need to change this if the netCDF libraries libnetcdf and libnetcdff are not in the standard location under the “lib” subdirectory of NETCDF. |

FFLAGS   | the Fortran flags passed to “FC” (or “MPIFC”) during compilation. There are often flags used for optimized code versus debugging code. See your particular compiler’s documentation for more information. |

LDFLAGS  | the linker flags passed to LD during compilation. See your particular linker’s documentation for more information. |



<span id=”path_names” class=”anchor”></span> [](#path_names)

#### Customizing the ‘path_names_*’ files

Several path_names_*  files are provided in the “work” directory for
each specific model. In this case, the directory of interest is
DARTHOME/models/lorenz_63/work (see the next section). Since each model comes
with its own set of files, the path_names_* files typically need no
customization. However, modifying these files will be required if you wish to
add your model to DART. See [How do I run DART with my model?](#RunWithMyModel)
for more information.

<span id=”building” class=”anchor”></span> [](#building)

### Building the Lorenz_63 DART project.

In order to get started with DART, here we use the Lorenz 63 model, which is a
simple ODE model with only three variables. DART supports models with many
orders of magnitude more variables than three, but if you can compile and run
the DART code for any ONE of the models, you should be able to compile and run
DART for ANY of the models. For time-dependent filtering known as
cycling, where observations are iteratively assimilated at multiple time
steps, DART requires the ability to move the model state forward in time. For
low-order models, this may be possible with a Fortran function call, but for
higher-order models, this is typically done outside of DART’s execution
control. However, the assimilation itself is conducted the same way for all
models. For this reason, here we focus solely on the Lorenz 63 model. If
so desired, see
[The Lorenz 63 model: what is it and why should we care?](#Lorenz63) for
more information on this simple yet surprisingly relevant model. See
[A high-level workflow of DA in DART](#dartWorkflow) for further information
regarding the DART workflow if you prefer to do so before building the code.

There are seven separate, stand-alone programs that are typically necessary for
the end-to-end execution of a DART experiment; see below or the
[What is DART?](#WhatIsDART) section for more information on these programs and
their interactions. All DART programs are compiled the same way, and each model
directory has a directory called work that has the components necessary to
build the executables.


	dart

	NOTE: some higher-order models have many more than seven programs; for





example, the Weather Research and Forecasting (WRF) model, which is run
operationally around the world to predict regional weather, has 28
separate programs. Nonetheless, each of these programs are built the same way.

The quickbuild.csh in each directory builds all seven programs necessary for
Lorenz 63. Describing what the quickbuild.csh script does is useful for
understanding how to get started with DART.

The following shell commands show how to build two of these seven
programs for the lorenz_63 model: preprocess and obs_diag. preprocess is
a special program that needs to be built and run to automatically generate
Fortran code that is used by DART to support a subset of observations - which
are (potentially) different for every model. Once preprocess has been run and
the required Fortran code has been generated, any of the other DART programs may
be built in the same way as obs_diag in this example. Thus, the following
runs mkmf to make a Makefile for preprocess,
makes the preprocess program, runs preprocess to generate the Fortran
observation code, runs mkmf to make a Makefile for obs_diag, then makes the
obs_diag program:

> cd DARTHOME/models/lorenz_63/work
> ./mkmf_preprocess
> make
> ./preprocess
> ./mkmf_obs_diag
> make

The remaining executables are built in the same fashion as obs_diag: run
the particular mkmf script to generate a Makefile, then execute make to
build the corresponding program.

Currently, DART executables are built in a work subdirectory under the
directory containing code for the given model. The Lorenz_63 model has
seven mkmf_xxxxxx files for the following programs:


Program | Purpose |

:—— | :—— |

[preprocess](https://ncar.github.io/DART/api/v0.0.6/program/preprocess.html) | creates custom source code for just the observations of interest |

[create_obs_sequence](https://ncar.github.io/DART/api/v0.0.6/program/create_obs_sequence.html) | specify a (set) of observation characteristics taken by a particular (set of) instruments |

[create_fixed_network_seq](https://ncar.github.io/DART/api/v0.0.6/program/create_fixed_network_seq.html) | specify the temporal attributes of the observation sets |

[perfect_model_obs](https://ncar.github.io/DART/api/v0.0.6/program/perfect_model_obs.html) | spinup and generate “true state” for synthetic observation experiments |

[filter](https://ncar.github.io/DART/api/v0.0.6/program/filter.html) | perform data assimilation analysis |

[obs_diag](https://ncar.github.io/DART/api/v0.0.6/program/obs_diag.html) | creates observation-space diagnostic files in netCDF format to support visualization and quantification. |

[obs_sequence_tool](https://ncar.github.io/DART/api/v0.0.6/program/obs_sequence_tool.html) | manipulates observation sequence files. This tool is not generally required (particularly for low-order models) but can be used to combine observation sequences or convert from ASCII to binary or vice-versa. Since this is a rather specialized routine, we will not cover its use further in this document. |



As mentioned above, quickbuild.csh is a script that will build every
executable in the directory. There is an optional argument that will
additionally build the MPI-enabled versions which will not be covered in this
set of instructions. See [The DART MPI introduction](dart_mpi.md) page for more
information on using DART with MPI.

Running quickbuild.csh will compile all the executables mentioned above for
the lorenz_63 model:

> cd DARTHOME/models/lorenz_63/work
> ./quickbuild.csh

The result (hopefully) is that seven executables now reside in your work
directory.


	dart

	NOTE: The most common problem is that the netCDF libraries and/or





include files were not found in the specified location(s). The second most
common problem is that the netCDF libraries were built with a different
compiler than the one used for DART. Find (or compile) a compatible netCDF
library, edit the DARTHOME/build_templates/mkmf.template to point to the
correct locations of the includes and library files, recreate the `Makefile`s,
and try again.

<span id=”runningSomething” class=”anchor”></span> [](#runningSomething)

### Checking the build &mdash; running something.

The DARTHOME/models/lorenz_63/work directory is distributed with input files
ready to run a simple experiment: use 20 ensemble members to assimilate
observations “every 6 hours” for 50 days. Simply run the programs
perfect_model_obs and filter to generate the results to compare against
known results. Note that this section is not intended to provide any details of
why you are doing what you are doing - this is sort of a “black-box” test. See
[The Lorenz 63 model: what is it and why should we care?](#lorenz63) to see
more about what this “physically” means for this low-order model, and
[Data assimilation in DART using the Lorenz 63 model](#DAForLorenz63) for a
more in-depth view of this process.

The Manhattan release uses netCDF files for the input/output file formats.
ncgen is a helpful tool to create netCDF files from an ASCII representation
and is part of any netCDF installation. The lorenz_63
quickbuild.csh script already runs this command, but it is repeated here for
clarity. Once the necessary netCDF input files are created from the ASCII
.cdl text files, run perfect_model_obs to generate the “true state” and filter to run the data assimilation:

> ncgen -o perfect_input.nc perfect_input.cdl
> ncgen -o filter_input.nc filter_input.cdl
> ./perfect_model_obs
> ./filter

There should now be the following output files:



|                   |



:——             | :——           |

from executable “perfect_model_obs” |       |

perfect_output.nc | The last timestep of the model state.                          |

true_state.nc     | The model trajectory - the truth. |

obs_seq.out       | The observations that were harvested as the true model was advanced (and which will be assimilated). |

from executable “filter” |      |

preassim.nc       | The ensemble of model states just before assimilation. This is the prior.<br/> :dart: NOTE: this file is a time series of the prior model states at all times. |

filter_output.nc  | The ensemble of model states after assimilation. This is the posterior.<br/> :dart: NOTE: this file has only the final time step of the posterior model state. |

analysis.nc       | The model trajectory of the posterior.                    |

obs_seq.final     | The observations and ensemble estimates of the ‘observations’. |

from both       |      |

dart_log.out      | The run-time log of the experiment.  This grows with each execution and may safely be deleted at any time. |

dart_log.nml      | A record of the input settings of the experiment.  This file may safely be deleted at any time. |



Note that if you change the input.nml namelist values controlling
inflation (increasing the ensemble spread) and file output, several (perhaps
many) more files may be created. The section
[Data assimilation in DART using the Lorenz 63 model](#DAForLorenz63) below
describes how to make changes to the input.nml file and rerun the filter
experiment.

<span id=”matlab” class=”anchor”></span> [](#matlab)

### Configuring the DART diagnostic tools for MATLAB®

The Manhattan release of DART uses native MATLAB netCDF support and no
longer requires any third-party toolboxes or built-in MATLAB toolboxes.
To allow your environment to seamlessly use the DART MATLAB functions,
your MATLABPATH must be set such that you
have access to several DART directories. At the MATLAB prompt, type the following
(using the real path to your DART installation):

> >> addpath(‘path_to_dart/diagnostics/matlab’,’-BEGIN’)
> >> addpath(‘path_to_dart/docs/DART_LAB/matlab’,’-BEGIN’)

It is very convenient to put these lines in your ~/matlab/startup.m file so
they are executed every time MATLAB starts up. DART provides an example
diagnostics/matlab/startup.m that you can use, which is internally
documented through file comments.

<span id=”verify” class=”anchor”></span> [](#verify)

### Verifying the DART installation (requires MATLAB®)

The Lorenz model is notoriously sensitive to very small changes; in fact, the
story of Lorenz discovering this sensitivity is a classic in the annals of the
study of chaos, which in turn was instrumental in the development of data
assimilation as a field of study. See
[The Lorenz 63 model: what is it and why should we care?](#Lorenz63) or
[What is data assimilation?](#WhatIsDA) for more information.

This sensitivity is of practical interest for verifying these results. The
initial conditions files and observations sequences are provided in ASCII,
which is portable across systems, but there may be some machine-specific
round-off error in the conversion from ASCII to machine binary. As Lorenz 63
is such a nonlinear model, extremely small differences in the initial
conditions may eventually result in noticeably different model trajectories.
Even different compiler flags may cause tiny differences that ultimately result
in large differences. Your results should start out looking VERY SIMILAR and
may diverge with time.

The simplest way to determine if the installation is successful is to run some
of the functions available in DARTHOME/diagnostics/matlab/. Usually, we
launch MATLAB from the DARTHOME/models/lorenz_63/work directory and use the
MATLAB addpath command to make the DARTHOME/matlab/ functions available for
execution in any working directory.

In the case of this Lorenz model, we know the “true” (by definition) state of
the model that is consistent with the observations, which was generated by the
perfect_model_obs program as described in
[Checking the build &mdash; running something](#runningSomething). The
following MATLAB scripts compare the ensemble members with the truth and can
calculate the error in the assimilation:

<table>
<tr>
<td width=”50%”>

<pre>
<code>

[unix prompt] cd DARTHOME/models/lorenz_63/work
[unix prompt] matlab -nodesktop
(lots of startup messages I’m skipping)


[matlab_prompt] addpath ../../../diagnostics/matlab
[matlab_prompt] plot_total_err
Input name of true model trajectory file;
(cr) for perfect_output.nc
perfect_output.nc
Input name of ensemble trajectory file;
(cr) for preassim.nc
preassim.nc
Comparing true_state.nc and


preassim.nc




[matlab_prompt] plot_ens_time_series
Input name of ensemble trajectory file;
(cr) for preassim.nc


	Comparing true_state.nc and
	preassim.nc





Using Variable state IDs 1  2  3

pinfo =


struct with fields:







model: ‘Lorenz_63’




def_var: ‘state’





	num_state_vars: 1
	num_copies: 20








num_ens_members: 20





	ensemble_indices: [1 2 3 … 18 19 20]
	
min_state_var: 1
max_state_var: 3





	def_state_vars: [1 2 3]
	
fname: ‘preassim.nc’




truth_file: ‘true_state.nc’
diagn_file: ‘preassim.nc’
truth_time: [1 200]
diagn_time: [1 200]


vars: {‘state’}
time: [200x1 double]
















	time_series_length: 200
	
var: ‘state’




var_inds: [1 2 3]














</code>
</pre>
</td>
<td width=”50%”>
<img src=”../images/lorenz_63_total_err.png”       width=”500” alt=”xxxx” /><br />
<img src=”../images/lorenz_63_ens_time_series.png” width=”500” alt=”xxxx” />
</td>
</tr>
</table>

From the above plot_ens_time_series graphic, you can see the individual
green ensemble members becoming more constrained with less spread as time
evolves. If your figures look similar to these, you should feel confident that
everything is working as intended. Don’t miss the opportunity to rotate the
“butterfly” plot for that classic chaos theory experience (perhaps while
saying, “life, uh, finds a way”).

Congratulations! You have now successfully configured DART and are ready to
begin the next phase of your interaction with DART. You may wish to learn more
about:


	[What is data assimilation?](#WhatIsDA) &mdash; a brief introduction to ensemble data assimilation. This section includes more information about the Lorenz 63 model and how to configure the input.nml file to play with DA experiments in DART using the Lorenz 63 model.


	[What is DART?](#WhatIsDART) &mdash; This section includes more information about DART and a basic flow chart of the overall DART workflow.


	[How do I run DART with my model?](#RunWithMyModel)


	[How do I add my observations to DART?](#RunWithMyObs)


	[How would I use DART for teaching students and/or myself?](#DartForEducation)


	[How can I contribute to DART?](#ContributeToDart)
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	REQUEST: In the case that the above instructions had one or more





issues that either did not work for you as intended or were confusing, please
contact the DART software development team at dart @ ucar .edu . We value your
input to make getting started as smooth as possible for new DART users!



<span id=”WhatIsDA” class=”anchor”></span> [](#WhatIsDA)

## What is data assimilation?

[[top](#top)]

As some users may be unfamiliar with data assimilation and/or appreciate a brief
refresher, in this section we provide a (very) basic introduction to the
subject. For additional information, see the section on
[How would I use DART for teaching students and/or myself?](#DartForEducation).

Included in this section are the subsections:


	[Introduction to ensemble DA](#EnsDAIntro) - a brief introduction to the main concepts of DA


	[The Lorenz 63 model: what is it and why should we care?](#Lorenz63) -  more information about the Lorenz 63 model and its far-reaching consequences, and


	[Data assimilation in DART using the Lorenz 63 model](#DAForLorenz63) -  an expanded introduction to DA in DART that opens up the “black box” of the Lorenz 63 model




<span id=”EnsDAIntro” class=”anchor”></span> [](#EnsDAIntro)

### Introduction to ensemble DA

Data assimilation is a powerful and widely used computational technique that
has many application areas throughout mathematics and science. At a very high
level, data assimilation refers to the process of merging prior
forecasts with new observations, creating a new analysis that is an
“optimal” blending of the two by taking into account their relative
uncertainties.

The following animated graphic describes the data assimilation process at a
high level:

<img src=”../images/science_nuggets/AssimAnim.gif” width=”500” alt=””>

Shown here are three ensemble members, each of which gives a different initial
prediction at the time t*<sub>*k*</sub>. Moving these predictions
forward in time to *t*<sub>*k*+1</sub> will give a new forecast distribution
called a *prior. Suppose at this time there is also an observation, which will
have some uncertainty due to instrument noise, etc. Mapping each of the ensemble
members to the observations with a function h and applying Bayes’ rule
will generate an update to the prior distribution, called here the state
increment. Adding the state increment to the ensemble members will give the
new analysis (also known as the posterior) at time *t*<sub>*k*+1</sub>.
This process can then be repeated for each set of observations as many times as
necessary.

Expanding on this somewhat, let’s call the i*<sup>th</sup>
ensemble member **x**<sub>i</sub> at the time step we are working on. In the
above graphic, there were three ensemble members, but in general there are
usually many more, typically in the range of 20-1000 depending on the
application. Each member **x**<sub>i</sub> can have
*n components which together make up the model state. Each member contains
all the variables you want to find the best fit for at a particular time. These
variables are usually physically meaningful quantities; for example, this might
include the 3D values of water vapor, temperature, wind speed, etc. for an
atmospheric model. These values are expected to be advanced forward in time by
a model, which is why they are called the “model state.”
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necessary to restart the model for a new forecast.

At any particular time step there may be m observations available. These
observations are assumed to relate to the model state and provide “real
world” checks against the model forecast. A “forward operator,” represented in
the above diagram by h, is a relationship that computes what an
observation is most likely to be given a model state. In other words, h maps
between x**<sub>i</sub> and **y**<sub>j</sub>, giving the “expected
observation” of the *j*<sup>th</sup> observation given the *i*<sup>th</sup>
ensemble member. An observation may be of the same quantity as one found in the
model state at a particular location, in which case the *h* function mapping
them is trivial and the comparison is simple. The vector **y may also contain
more complex derived functions of the state x (for example radar
observations of precipitation), in which case the h function that models this
mapping between x (in this example precipitation) and y (in this
example radar returns) may be an algorithm that is quite complicated.

In practice, observations are never 100% reliable. The observations
themselves will have some uncertainty for example arising from instrument
noise. The instrument noise error variances are typically published
by the instrument manufacturer, and these observation errors are usually assumed
to be independent as true instrument “noise” should not be correlated in time
or space. Furthermore, since models have a finite resolution (i.e. they are “fuzzy”),
there is almost always an error that arises when comparing the model to the observations.
This is called the representativeness error. Put together, the potential “likelihood”
of the possible values of the observation forms the observational error distribution
in the above graphic.

Finally, note that in real-world applications there are typically many fewer
observations than state variables, i.e. m is typically much much less than
n. In practice this means that the observations alone cannot be relied upon
to predict the model state; the ensemble approach with Bayes’ rule is necessary.

DART makes it easy to find the optimal solution to the above problem using an
ensemble filter algorithm (the most typically used algorithm is the
Ensemble Adjustment Kalman Filter; see
[Important capabilities of DART](#dartCapabilities) for more information). The
user specifies which state variables make up the x ensemble vectors, which
observations make up the y vector, and the observation error variances. The
ensemble of model states is assumed to be representative of the
uncertainty/spread in the model state. Finally, the user tells DART how to
advance the model from one forecast to the next. Once DART has this
information, it can proceed with optimally blending the observations and model
forecasts &mdash; in other words, performing data assimilation.

The spread of the ensemble informs DART of the uncertainty in the model
state. This allows for as rich, complex, and meaningful relationships as the
data contained within the ensemble itself. By default, no implicit assumptions
about the relative uncertainties are required, as the data can speak for itself.
Areas of large uncertainty will naturally have large spread, as the ensemble
members will contain very different values at those locations, while areas of
low uncertainty will naturally have low spread due to the ensemble having
relatively similar values at those locations. Furthermore, relationships in
space and between variables can also be meaningfully derived. Of course this
means that the quality of the ensemble is crucial to the success of the DA
process, as uncertainty can only be accurately quantified if the ensemble is
representative of the “true” uncertainty inherent in the system. Due to the fact
that a relatively small number of ensemble members are typically used,
estimated correlations between two distant locations may become unreliable due
to sampling error. Thus, various techniques such as covariance localization
may be employed to improve the quality of estimated relationships and increase
skill in prediction. Furthermore, the ensemble spread may sometimes be deemed
“too small” or “too large” by various criteria, in which case a multiplicative
or additive inflation or deflation, respectively, may be applied.
In practice the ensemble method is usually far more accurate and
less error-prone than the main alternative of manually specifying uncertainty
by some manually-designed algorithm, and it is certainly less labor-intensive
to develop.

This was a brief introduction to the important concepts of DA. For more
information, see
[How would I use DART for teaching students and/or myself?](#DartForEducation).

In the next section, details of the Lorenz 63 model are provided to give a more
concrete illustration of the DA process.



<span id=”Lorenz63” class=”anchor”></span> [](#Lorenz63)

### The Lorenz 63 model: what is it and why should we care?

In this section we present additional detail about the Lorenz 63 model. As we
previously treated this model as a black box, this section will provide
background on this highly relevant chaotic system for the purpose of deepening
understanding of DART and DA in general.

In 1963, Edward Lorenz developed a simplified 3-variable model to investigate
atmospheric convection. By making several simplifications to the Boussinesq
approximation, the Lorenz model was derived for a single thin layer of fluid
uniformly heated from below and cooled from above. The [original paper](https://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2)
(Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos.
Sci. 20, 130-141.) has been cited over 20,000 times.
The relatively simple &mdash; yet nonlinear &mdash; system of ordinary
differential equations (ODEs) is:

~~~
X’ = sigma*(Y-X)
Y’ = -XZ + rX - Y
Z’ =  XY - bZ
~~~

where the left-hand sides of the equations are derivatives with respect to time.
Here, X is proportional to the rate of convection, Y is related to the
horizontal temperature variation, and Z is the vertical temperature
variation. There are three constant parameters: sigma relates to the Prandtl
number, r to the Rayleigh number, and b to the physical dimensions of the
layer. Note that Y’ and Z’ each have a nonlinear term (-XZ and XY,
respectively).

The numerical investigation of the chaos arising from this system of ODEs
unexpectedly launched a revolution in our understanding of nature and lead to
numerous mathematical and scientific breakthroughs. While the chaotic nature of
certain systems such as the three-body problem had been investigated
previously, it was the electronic computer, which could compute thousands of
calculations per second, that allowed these ideas to be formalized. In
particular, Lorenz’s model made it clear for the first time how an
infinitesimally small change in the initial conditions could end up having a
huge impact on the final results in certain situations. Lorenz discussed the
strange behavior of this model in
[The Essence of Chaos, University of Washington Press, 1995](https://uwapress.uw.edu/book/9780295975146/the-essence-of-chaos/):

> > At one point I decided to repeat some of the computations in order to
examine what was happening in greater detail. I stopped the computer,
typed in a line of numbers that it had printed out a while earlier, and
set it running again. I went down the hall for a cup of coffee and
returned after about an hour, during which the computer had simulated
about two months of weather. The numbers being printed out were nothing
like the old ones. I immediately suspected a weak vacuum tube or some other
computer trouble, which was not uncommon, but before calling for service
I decided to see just where the mistake had occurred, knowing that this
could speed up the servicing process. Instead of a sudden break, I found
that the new values at first repeated the old ones, but soon afterward had
differed by one and then several units in the last decimal place. …
The numbers I had typed in were not the exact original numbers, but were
the rounded-off values that appeared in the original printout. The initial
round-off errors were the culprits; they were steadily amplifying until
they dominated the solution. In today’s terminology, there was chaos.

Lorenz discovered that even in a model with just three variables, a very small
change in the initial conditions (in this case, the numbers he typed back into
the computer, which were very slightly different from the original numbers)
could cause the entire large-scale behavior to change. Lorenz’s discovery has
many important practical implications:


	If tiny changes can grow to dominate a system, it is no longer possible to find the one set of “perfect” initial conditions and hope to allow the system to run forever with perfect forecasts. Instead, forecasting chaotic systems must be approached statistically.


	There is a practical limit of predictability inherent in chaotic systems. In other words, the nonlinear dynamics of a chaotic model are inherently difficult to predict. Multiple evaluations (an ensemble) can be run with different plausible initial conditions to quantify this error growth.


	In order to forecast chaotic systems effectively, periodic observations of the state are required to effectively guide the forecast and narrow the uncertainty. Since in real-world applications observations are almost always sparse compared to the number of state variables, merging observations and forecasts (i.e. data assimilation) is required to effectively forecast chaotic systems.




While Lorenz 63 is a simple example of a chaotic system, there are many other
chaotic systems of real practical interest in areas such as weather prediction,
climate, oceanography, hydrology, ecology, biology, … the list goes on and
on. In short, while the Lorenz model is a simple problem that can easily run
even on the most meager of computers today, it is representative of the same
problem of predictability that can be found throughout science. DART supports
the investigation of forecasting chaotic systems in any field where periodic
observations can be used to constrain the uncertainty using an ensemble.

<span id=”DAForLorenz63” class=”anchor”></span> [](#DAForLorenz63)

### Data assimilation in DART using the Lorenz 63 model

In this section we open the “black box” of the Lorenz model that was previously
used in [Quick-start instructions for the impatient](#QuickStart) and
[More detailed DART setup instructions](#DetailedSetup). This section assumes
you have successfully run the Lorenz 63 model with the example observation
files that were distributed with the DART repository. In this section you will
learn in more detail how DART interacts with the Lorenz 63 model to perform data
assimilation.

#### The input.nml namelist

The DARTHOME/models/lorenz_63/work/input.nml file is the Lorenz model namelist,
which is a standard Fortran method for passing parameters from a text file
into a program without needing to recompile. There are many sections within
this file that drive the behavior of DART while using the Lorenz 63 model
for assimilation. Within input.nml, there is a section called model_nml,
which contains the model-specific parameters:

~~~
&model_nml


sigma  = 10.0,
r      = 28.0,
b      = 2.6666666666667,
deltat = 0.01,
time_step_days = 0,
time_step_seconds = 3600,
solver = ‘RK2’
/




~~~

Here, you can see the values for the parameters sigma, r, and b that were
discussed in the previous section. These are the original values Lorenz used
in the 1963 paper to create the classic butterfly attractor.

#### The Lorenz 63 model code

The Lorenz 63 model code, which is under
DARTHOME/models/lorenz_63/model_mod.f90, contains the lines:

~~~
subroutine comp_dt(x, dt)

real(r8), intent( in) ::  x(:)
real(r8), intent(out) :: dt(:)

! compute the lorenz model dt from standard equations

dt(1) = sigma * (x(2) - x(1))
dt(2) = -x(1)*x(3) + r*x(1) - x(2)
dt(3) = x(1)*x(2) - b*x(3)

end subroutine comp_dt
~~~
which directly translates the above ODE into Fortran.

Note that the routine comp_dt does not explicitly depend on the time
variable, only on the state variables (i.e. the Lorenz 63 model is time
invariant).
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use the Runge-Kutta 2 scheme (otherwise known as RK2 or the midpoint scheme) to
advance the model.

Since the Lorenz 63 model is time invariant, the RK2 code to advance the ODE
in time can be written as follows, again following the Lorenz 63 paper, for a
fract fraction of a time-step (typically equal to 1):

~~~
!——————————————————————
!> does single time step advance for lorenz convective 3 variable model
!> using two step rk time step

subroutine adv_single(x, fract)

real(r8), intent(inout) :: x(:)
real(r8), intent(in)    :: fract

real(r8) :: x1(3), x2(3), dx(3)

call comp_dt(x, dx)            !  compute the first intermediate step
x1 = x + fract * deltat * dx

call comp_dt(x1, dx)           !  compute the second intermediate step
x2 = x1 + fract * deltat * dx

!  new value for x is average of original value and second intermediate

x = (x + x2) / 2.0_r8

end subroutine adv_single
~~~

Together, these two code blocks describe how the Lorenz 63 model is advanced
in time. You will see how DART uses this functionality shortly.

#### The model time step and length of the data assimilation

In the original Lorenz 63 paper, the model is run for 50 “days” using a
non-dimensional time-step of 0.01, which is reproduced in the namelist above.
This time-step was assumed equal to 3600 seconds, or one hour, in dimensional
time. This is also set in the namelist above. The Lorenz 63 model observation
file included with the DART repository uses observations of all three state
variables every six hours (so every six model steps) to conduct the
assimilation.

If you were previously able to run the Matlab diagnostic scripts, you may
have noticed that the butterfly attractor for the included example does not
look as smooth as might be desired:

<img src=”../images/lorenz_63_attractor_lr.png”       width=”500” alt=”Lorenz attractor” /><br />

This is because the model output was only saved once every six “hours” at the
observation times. As an exercise, let’s make a nicer-looking plot using the
computational power available today, which even on the most humble of computers
is many times greater than what Lorenz had in 1963. Let’s change Lorenz’s
classic experiment to the following:

1. Make the non-dimensional timestep 0.001, a factor of 10 smaller, which will
correspond to a dimensional timestep of 360 seconds (6 minutes). This smaller
time-step will lead to a smoother model trajectory.
2. Keep the original ratio of time steps to observations included in the
DART repository of assimilating observations every six time steps, meaning we
now need observations every 36 minutes.

Therefore, in order to conduct our new experiment, we will need to regenerate
the DART observation sequence files.

To change the time-step, change the input.nml file in DARTHOME/models/lorenz_63/work to the following:

~~~
&model_nml


sigma  = 10.0,
r      = 28.0,
b      = 2.6666666666667,
deltat = 0.001,
time_step_days = 0,
time_step_seconds = 360
/




~~~
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namelist files is to pass run-time parameters to a Fortran program without
recompilation.

#### Updating the observation sequence

Let’s now regenerate the DART observation files with the updated timestep and
observation ratio. In a typical large-scale application, the user will provide
observations to DART in a standardized format called the Observation Sequence
file. Since there are no real observations of the Lorenz 63 system, we must create
our own synthetic observations - which may be done using create_obs_sequence,
create_fixed_network_seq, and perfect_model_obs programs; each of which we
will explain below. These helpful interactive programs are included with DART
to generate these observation sequence files for typical research or
education-oriented experiments. In such setups, observations (with noise added)
will be generated at regular intervals from a model “truth”. This “truth” will only
be available to the experiment through the noisy observations but can later be used
for comparison purposes. The number of steps necessary for the ensemble members to
reach the true model state’s “attractor” can be investigated and, for example,
compared between different DA methods. This is an example of an “OSSE” &mdash; see
[High-level DA workflows in DART](#dartWorkflow) for more information.

The three programs used in this example to create an observation sequence
again are create_obs_sequence, create_fixed_network_seq, and perfect_model_obs.
create_obs_sequence creates a template for the observations,
create_fixed_network_seq repeats that template at multiple times,
and finally perfect_model_obs harvests the observation values.
These programs have many additional capabilities; if interested, see
the corresponding program’s documentation.

Let’s now run the DART program create_obs_sequence to create the
observation template that we will later replicate in time:

> # Make sure you are in the DARTHOME/models/lorenz_63/work directory
> ./create_obs_sequence

The program create_obs_sequence will ask for the number of observations.
Since we plan to have 3 observations at each time step (one for each of the
state variables), input 3:

~~~
set_nml_output Echo NML values to log file only



Input upper bound on number of observations in sequence
3
~~~

For this experimental setup, we will not have any additional copies of the
data, nor will we have any quality control fields. So use 0 for both.

~~~
Input number of copies of data (0 for just a definition)
0
Input number of quality control values per field (0 or greater)
0
~~~

We now will setup each of the three observations. The program asks to enter
-1 if there are no additional observations, so input anything else instead
(1 below). Then enter -1, -2, and -3 in sequence for the state
variable index (the observation here is just the values of the state variable).
Use 0 0 for the time (we will setup a regularly repeating observation
after we finish this), and 8 for the error variance for each observation.

Finally, after inputting press enter to use the default output file
set_def.out.

Input your values as follows:

~~~
input a -1 if there are no more obs
1


Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation…


1 RAW_STATE_VARIABLE







-1
input time in days and seconds (as integers)
0 0
Input the error variance for this observation definition
8
input a -1 if there are no more obs
1


Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation…


1 RAW_STATE_VARIABLE







-2
input time in days and seconds (as integers)
0 0
Input the error variance for this observation definition
8
input a -1 if there are no more obs
1


Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation…


1 RAW_STATE_VARIABLE







-3
input time in days and seconds (as integers)
0 0
Input the error variance for this observation definition
8
Input filename for sequence (<return> for set_def.out )

write_obs_seq  opening formatted observation sequence file “set_def.out”
write_obs_seq  closed observation sequence file “set_def.out”
create_obs_sequence Finished successfully.
~~~

#### Creating a regular sequence of observations

We will now utilize another DART program that takes this set_def.out file as
input. The interactive program  create_fixed_network_seq is a helper tool
that can be used to generate a DART observation sequence file made of a set of
regularly repeating observations.

> # Make sure you are in the DARTHOME/models/lorenz_63/work directory
> ./create_fixed_network_seq

We want to use the default set_def.out file, so press return. We also want a
regularly repeating time sequence, so input 1.

~~~
set_nml_output Echo NML values to log file only



Input filename for network definition sequence (<return> for set_def.out  )

To input a regularly repeating time sequence enter 1
To enter an irregular list of times enter 2
1
~~~

We now will input the number of observations in the file. The purpose of this
exercise is to refine the time step used by Lorenz in 1963 by a factor of 10.
Since we want to keep the ratio of six model steps per observation and run for
50 days, we will need 2000 model observations (360 seconds &times; 6 &times;


2000 = 50 days).
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time step, so a total of 6000 observations will be generated.
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the observational time only through this mechanism. In other words, deltat
in the namelist could relate to virtually any dimensional time step
time_step_seconds if the observation times were not considered. However, DART
will automatically advance the model state to the observation times in order to
conduct the data assimilation at the appropriate time, then repeat this process
until no additional observations are available, thus indirectly linking
deltat to time_step_seconds.

Enter 2000 for the number of observation times. The initial time will be
0 0, and the input period will be 0 days and 2160 seconds
(36 minutes).

~~~
Input number of observation times in sequence
2000
Input initial time in sequence
input time in days and seconds (as integers)
0 0
Input period of obs in sequence in days and seconds
0 2160
~~~

The numbers 1 to 2000 will then be output by create_fixed_network_seq. Press
return to accept the default output name of obs_seq.in. The file suffix is
.in as this will be the input to the next program, perfect_model_obs.


	~~~
	1
2





…
1998
1999
2000
What is output file name for sequence (<return> for obs_seq.in)


write_obs_seq  opening formatted observation sequence file “obs_seq.in”
write_obs_seq  closed observation sequence file “obs_seq.in”
create_fixed_network_seq Finished successfully.




~~~

#### Running perfect_model_obs

We are now ready to run perfect_model_obs, which will read in obs_seq.in
and generate the observations as well as create the “perfect” model trajectory.
“Perfect” here is a synonym for the known “true” state which is used to generate
the observations. Once noise is added (to represent observational uncertainty),
the output is written to obs_seq.out.

> # Make sure you are in the DARTHOME/models/lorenz_63/work directory
> ./perfect_model_obs

The output should look like the following:

~~~
set_nml_output Echo NML values to log file only


initialize_mpi_utilities: Running single process







quality_control_mod: Will reject obs with Data QC larger than    3
quality_control_mod: No observation outlier threshold rejection will be done
perfect_main  Model size =                     3
perfect_read_restart: reading input state from file
perfect_main  total number of obs in sequence is         6000
perfect_main  number of qc values is            1

perfect_model_obs: Main evaluation loop, starting iteration    0
move_ahead Next assimilation window starts    at:  day=       0 sec=     0
move_ahead Next assimilation window ends      at:  day=       0 sec=   180
perfect_model_obs: Model does not need to run; data already at required time
perfect_model_obs: Ready to evaluate up to       3 observations

perfect_model_obs: Main evaluation loop, starting iteration    1
move_ahead Next assimilation window starts    at:  day=       0 sec=  1981
move_ahead Next assimilation window ends      at:  day=       0 sec=  2340
perfect_model_obs: Ready to run model to advance data ahead in time
perfect_model_obs: Ready to evaluate up to       3 observations




…

perfect_model_obs: Main evaluation loop, starting iteration 1999
move_ahead Next assimilation window starts    at:  day=      49 sec= 84061
move_ahead Next assimilation window ends      at:  day=      49 sec= 84420
perfect_model_obs: Ready to run model to advance data ahead in time
perfect_model_obs: Ready to evaluate up to       3 observations

perfect_model_obs: Main evaluation loop, starting iteration 2000
perfect_model_obs: No more obs to evaluate, exiting main loop
perfect_model_obs: End of main evaluation loop, starting cleanup
write_obs_seq  opening formatted observation sequence file “obs_seq.out”
write_obs_seq  closed observation sequence file “obs_seq.out”
~~~

You can now see the files true_state.nc, a netCDF file which has the perfect
model state at all 2000 observation times; obs_seq.out, an ASCII file which
contains the 6000 observations (2000 times with 3 observations each) of the
true model state with noise added in; and perfect_output.nc, a netCDF file
with the final true state that could be used to “restart” the experiment from
the final time (49.75 days in this case).

We can now see the relationship between obs_seq.in and obs_seq.out:
obs_seq.in contains a “template” of the desired observation locations and
types, while obs_seq.out is a list of the actual observation values, in this
case generated by the perfect_model_obs program.
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because there are no real observations for Lorenz 63. For systems that have
real observations, DART provides a variety of observation converters
available to convert from native observation formats to the DART format. See
[Observation converters provided by DART](#obsConverters) for a list.

#### Running the filter

Now that obs_seq.out and true_state.nc have been prepared, DART can perform
the actual data assimilation. This will generate an ensemble of model states,
use the ensemble to estimate the prior distribution, compare to the “expected”
observation of each member, and update the model state according to Bayes’
rule.

> # Make sure you are in the DARTHOME/models/lorenz_63/work directory
> ./filter

~~~
set_nml_output Echo NML values to log file only
initialize_mpi_utilities: Running single process



quality_control_mod: Will reject obs with Data QC larger than    3
quality_control_mod: No observation outlier threshold rejection will be done
assim_tools_init: Selected filter type is Ensemble Adjustment Kalman Filter (EAKF)
assim_tools_init: The cutoff namelist value is     1000000.000000
assim_tools_init: … cutoff is the localization half-width parameter,
assim_tools_init: … so the effective localization radius is     2000000.000000
filter_main: running with an ensemble size of    20
parse_stages_to_write:  filter will write stage : preassim
parse_stages_to_write:  filter will write stage : analysis
parse_stages_to_write:  filter will write stage : output
set_member_file_metadata no file list given for stage “preassim” so using default names
set_member_file_metadata no file list given for stage “analysis” so using default names
Prior inflation: None
Posterior inflation: None
filter_main: Reading in initial condition/restart data for all ensemble members from file(s)

filter: Main assimilation loop, starting iteration    0
move_ahead Next assimilation window starts    at:  day=       0 sec=     0
move_ahead Next assimilation window ends      at:  day=       0 sec=   180
filter: Model does not need to run; data already at required time
filter: Ready to assimilate up to       3 observations
comp_cov_factor: Standard Gaspari Cohn localization selected
filter_assim: Processed       3 total observations

filter: Main assimilation loop, starting iteration    1
move_ahead Next assimilation window starts    at:  day=       0 sec= 21421
move_ahead Next assimilation window ends      at:  day=       0 sec= 21780
filter: Ready to run model to advance data ahead in time
filter: Ready to assimilate up to       3 observations
filter_assim: Processed       3 total observations
…

filter: Main assimilation loop, starting iteration  199
move_ahead Next assimilation window starts    at:  day=      49 sec= 64621
move_ahead Next assimilation window ends      at:  day=      49 sec= 64980
filter: Ready to run model to advance data ahead in time
filter: Ready to assimilate up to       3 observations
filter_assim: Processed       3 total observations

filter: Main assimilation loop, starting iteration  200
filter: No more obs to assimilate, exiting main loop
filter: End of main filter assimilation loop, starting cleanup
write_obs_seq  opening formatted observation sequence file “obs_seq.final”
write_obs_seq  closed observation sequence file “obs_seq.final”
~~~

Based on the default Lorenz 63 input.nml namelist for filter included in
the DART repository, the assimilation will have three stages:

1. The preassim stage, where the ensemble  is updated by advancing the
model. The file`preassim.nc`, which contains the pre-assimilation model
trajectories for all the ensemble members, will be written.
2. The analysis stage, where the data assimilation is conducted. The
post-assimilation model trajectories for all the ensemble members will be
written to analysis.nc
3. The output stage, which writes the file obs_seq.final containing the
actual observations as assimilated plus the ensemble forward-operator expected
values and any quality-control values. This stage also writes the
filter_output.nc file containing the ensemble state from the final cycle,
which could be used to restart the experiment.

DART has now successfully assimilated our updated observations with a 6 minute
model time step and assimilation every 36 minutes. :tada:

#### Verifying the nicer-looking results

You can now run the verification scripts (as in the section
[Verify the results are correct](#verify)) in Matlab with the following
commands:

> >> addpath ../../../diagnostics/matlab
> >> plot_ens_time_series

Some additional commands to view the attractor from the ZY plane were used:

> >> set(findall(gca, ‘Type’, ‘Line’),’LineWidth’,2);
> >> set(gca,’FontSize’,18)
> >> xlabel(‘x’)
> >> ylabel(‘y’)
> >> zlabel(‘z’)
> >> view([90 0])

We can now see the following smooth Lorenz 63 true state and ensemble mean
comparison with a 6 minute model time step and assimilation every 36 minutes:

<img src=”../images/lorenz_63_attractor.png”       width=”500” alt=”Lorenz attractor” /><br />

As you can see, the ensemble mean in red matches the true state almost exactly,
although it took a number of assimilation cycles before the blue ensemble mean
was able to reach the red true state “attractor.”

You should now be able to play with the Lorenz 63 and/or other models in DART.
For more detailed information on the ins-and-outs of ensemble DA, see
[How would I use DART for teaching students and/or myself?](#DartForEducation).
For more concrete information regarding DART’s algorithms and capabilities, see
the next section: [What is DART?](#WhatIsDART). To add your own model to DART,
see [How do I run DART with my model?](#RunWithMyModel). Finally, if you wish
to add your own observations to DART, see [How do I add my observations to DART?](#RunWithMyObs).
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## What is DART?

[[top](#top)]

The Data Assimilation Research Testbed (DART) is an open-source community
facility that provides software tools for data assimilation research,
development, and education. Using DART’s carefully engineered ensemble data
assimilation algorithms and diagnostic tools, atmospheric scientists,
oceanographers, hydrologists, chemists, and other geophysicists can construct
state-of-the-art data assimilation systems with unprecedented ease.

In this section we will introduce DART in further detail. This includes:


	[Why should I use DART for my project?](#whyDart)


	[A brief history of DART](#dartHistory)


	[A high-level workflow of DA in DART](#dartWorkflow)


	[DART’s design philosophy](#dartDesign)


	[Important capabilities of DART](#dartCapabilities)


	[How to cite DART](#citeDart)
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### Why should I use DART for my project?

A common pitfall for graduate students and professionals alike is to look at
the simplicity of data assimilation, in particular ensemble data assimilation,
and decide they can easily write their own DA system. Indeed, this is true.
After learning of the core algorithms, a talented programmer using their
favorite language could write a functional DA system in a manner of weeks
if not days. However, he or she will soon find that while the core of DA
systems are easy to write, the more “real” the system needs to be, the more
complex it will become. Writing a parallel DA system that can efficiently
utilize multiple cores with MPI is not straight-forward, and adding
covariance localization, observation operators, multiple models, and auxiliary
tools such as quality control and pre-processing will quickly dwarf the amount
of core DA code, not to mention the headaches involved in supporting multiple
computing environments, compilers, etc.

DART employs a modular programming approach to apply an algorithm to move the
underlying models toward a state that is more consistent with information from
a set of observations. Models may be swapped in and out, as can different
DA algorithms. The method requires running multiple
instances of a model to generate an ensemble of states. A forward operator
appropriate for the type of observation being assimilated is applied to each of
the states to generate the model’s estimate of the observation.

DART remains the top choice for scientists, educators, and mathematicians
seeking mature and robust ensemble DA solutions without reinventing the wheel.
Here are some of the many benefits of using DART:

1. DART is freely available, open source, and released under the
[Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). In short
this means that you are granted a copyright license stating you are free to
use, modify, and redistribute any derivative works derived from the DART system
provided that you maintain the license and copyright information. Of course, we
also ask that you credit DART in your publications, and kindly ask that you
contribute your modifications so that other users may benefit. See
[How should I cite DART?](#citeDart) and
[How can I contribute to DART?](#ContributeToDart) for more information.
2. DART is fully parallel and carefully engineered to run on systems
ranging from single-core research computers to the top performing multicore
supercomputers in the world. Writing scalable parallel code is arguably the
most difficult and time-consuming task in scientific computing today, but DART
has already carefully implemented and tested this project, and the code is
available for you to use out-of-the-box. For more information on how DART was
written (and continues to be developed), see [DART’s design philosophy](#dartDesign).
3. DART contains numerous tools that accelerate getting started on both
research and “real-world” problems. Multiple rigorously tested inflation,
localization, perturbation, and other auxiliary data assimilation algorithms
are available for immediate use and testing. See [Important capabilities of DART](#dartCapabilities) for more information.
4. DART makes adding a new model straightforward. A new model only needs to
implement a list of (at most) 18 core functions or use the default behavior if
applicable to take advantage of DART’s mature and robust DA algorithms. A
basic data assimilation system for a large model can be built in person-weeks,
and comprehensive systems have been built in a few months. See
[How do I run DART with my model?](#RunWithMyModel) for more information.
5. DART makes it easy to add new observations in order to test their
potential beneficial impact. Incorporating new observation types only requires
creating a forward operator that computes the expected value of an observation
given a model’s state. See
[How do I add my observations to DART?](#RunWithMyObs) for more information.
6. DART can be used to test new DA algorithms. Many such algorithms have
been successfully implemented, tested, and published using DART. This is not
covered in this getting started guide as this is an “advanced user”
functionality, so for this purpose it is best to first get in touch with the
DART team at dart @ ucar.edu to make the process as smooth as possible.
7. Finally, and perhaps most importantly, DART has world-class support
available from the DART team at NCAR. A talented team of dedicated software
engineers and data assimilation scientists work together to continually improve
DART and support user needs. See the [About us](About_Us.md) for more
information about the DART team.

<span id=”dartHistory” class=”anchor”></span> [](#dartHistory)

### A brief history of DART

The DART project was initiated in August 2001, and in 2003, the Data
Assimilation Research Section (DAReS) was officially formed at NCAR. In
2004, the first officially supported version of DART was released. Consistent
version control history is available back to 2005, making DART an extremely
long-lived and well-supported software project. Since 2004, there have been
more than a dozen releases. The first release, Easter, began the trend of
naming the major releases after islands in alphabetical order in the
following sequence:


Release          | Date        | Brief description |

:——-         | :———- | :———- |

Easter           |  8 Mar 2004 | Initial release |

Fiji             | 29 Apr 2004 | Enhanced portability; support for CAM and WRF |

Guam             | 12 Aug 2004 | New observation modules |

Pre-Hawaii       | 20 Dec 2004 | New filtering algorithms |

Hawaii           | 28 Feb 2005 | New filtering algorithms |

DA Workshop 2005 | 13 Jun 2005 | Tutorial, observation preprocessing |

Pre-Iceland      | 20 Oct 2005 | Huge expansion of real observation capability |

Iceland          | 23 Nov 2005 | Huge expansion of real observation capability, <a href=”https://www.image.ucar.edu/DAReS/DART/Lanai/doc/html/history/I_diffs_from_workshop.html”>more</a> |

Post-Iceland     | 20 Jun 2006 | Observation-space adaptive inflation, <a href=”https://www.image.ucar.edu/DAReS/DART/Lanai/doc/html/history/PostI_diffs_from_I.html”>more</a> |

Pre-J            | 02 Oct 2006 | Updated scalable filter algorithm |

Jamaica          | 12 Apr 2007 | Vertical localization, extensive MPI testing, <a href=”https://www.image.ucar.edu/DAReS/DART/Lanai/doc/html/history/Jamaica_diffs_from_I.html”>more</a> |

Kodiak           | 30 Jun 2011 | New obs types, new diagnostics, new utilities, much <a href=”https://www.image.ucar.edu/DAReS/DART/Lanai/doc/html/history/Kodiak_release.html#CurrentUsers”>more</a> |

Lanai            | 13 Dec 2013 | Support for many new models, chemistry/aerosol types, new diagnostics, new utilities, much <a href=”https://www.image.ucar.edu/DAReS/DART/Lanai/doc/html/Lanai_release.html#CurrentUsers”>more</a> |

Manhattan        | 15 May 2017 | Native netCDF support, better scaling/performance, much <a href=”https://www.image.ucar.edu/DAReS/DART/Manhattan/docs/index.html#Updates”>more</a> |



In September 2009, DART was featured on the cover of the Bulletin of the
American Meteorological Society:

<img src=”../images/BAMS-cover400.jpg” width=”500” alt=”BAMS Sept 2009 Cover” /><br />

The September 2009 issue of BAMS can be found
[here](https://journals.ametsoc.org/toc/bams/90/9), while the DART article can
be found directly
[here](https://journals.ametsoc.org/doi/full/10.1175/2009BAMS2618.1).

On the [Publications](Publications.md) page there are over 40 example
publications that use DART, although there are many additional publications
using DART not listed. The seminal BAMS paper has over 400 citations according
to [Google Scholar](http://scholar.google.com). The core algorithms used in
DART have also been cited many more times. For example, the core EAKF algorithm
([Anderson 2001](https://journals.ametsoc.org/doi/full/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2))
used in DART has over 1500 citations according to Google scholar.

<span id=”dartWorkflow” class=”anchor”></span> [](#dartWorkflow)

### High-level DA workflows in DART

In this section we present two high-level data assimilation workflows that show
the relevant DART programs with their inputs and outputs. These two workflows
represent two different types of DA experiments typically run.

It is possible to run DART in Observation System Simulation Experiment
(OSSE) mode. In OSSE mode, a perfect “true” model trajectory is created, and
synthetic observations are generated from the “truth” with added noise. This
is useful to test the theoretical capability of DA algorithms, observations,
and/or models. In this document so far, we have conducted only OSSEs.

It is also possible to run DART in a more realistic Observation System
Experiment (OSE) mode. In an OSE, there is no perfect model truth, which
is similar to real-world situations where the true values of the model state
will likely never be perfectly known. The observations (which again themselves
are noisy and imperfect) are the only way to get a look at the “truth” that is
estimated by the model state. In OSE mode, the user must provide observations
to DART, which are usually from real-world observation systems (which come with
all of their own idiosyncrasies and imperfections). DART can help generate
ensemble perturbations, or the user can specify their own.

The filtering aspect is the same for both OSSE and OSE experiments, and many of
the same tools for data assimilation are available in OSSE and OSE modes. The
core difference, therefore, is the existence of the perfect model “truth.”

For a simple model such as Lorenz 63 investigated above, DART can typically
advance the model time explicitly through a Fortran function call, allowing the
filtering to compute all necessary time steps in sequence without exiting the
DART program. However, for larger models (or those that DART cannot communicate
with through Fortran), a shell-script may be necessary to run the model and
advance the time forward. For the largest models, the model state is typically
advanced in parallel over many computing nodes on a supercomputer. In this more
complex case, DART only considers one step at a time in order to combine the
observations and the prior ensemble to find the posterior analysis, which
will then be used to restart the model and continue the forecast.

For efficiency reasons, data from models with large states may be written in
separate files for every ensemble member at every stage of the assimilation
process. Data from models with small states may be conveniently be written as
variables inside a single netCDF file.

#### Simple model workflow with an OSSE

The first example DA workflow is for a model that can be advanced by DART
with all ensemble members stored in a single file running an OSSE:

<img src=”../images/simple_model_workflow.jpg” width=”500” alt=”OSSE workflow with all members in one file” /><br />

As shown, the program preprocess takes the input.nml namelist file and
generates Fortran code for the observations. This code, along with the namelist,
is used by all subsequent programs. create_obs_seq is used to define a set
of observations in set_def.out, which can be replicated through the program
create_fixed_network_seq to create a obs_seq.in file. There are two inputs
to perfect_model_obs: the obs_seq.in file and perfect_input.nc (which here
is generated by perfect_input.cdl via ncgen). obs_seq.in provides
perfect_model_obs with the observation template (i.e. the location and type
of observations), while perfect_input.nc provides the initial state that
will be used to advance the model. On output, the “perfect” model state at
the final time, which can be used as a restart for running this procedure again,
will be written to perfect_output.nc (i.e. perfect_output.nc could be
renamed to perfect_input.nc to extend the OSSE), while the entire state
trajectory will be stored in true_state.nc. The noisy synthetic observations
and noise-free truth (for verification only) will be stored in obs_seq.out. The
observation values of obs_seq.out will be input to filter along with the
filter_input.nc (generated by filter_input.cdl via ncgen), which contains
the initial state for all the ensemble members. The output of filter is
preassim.nc, which contains the prior state for all the ensemble members
just before applying DA (so including prior inflation if it is being used);
analysis.nc, which contains the posterior state for all the ensemble members after assimilation (and including inflation if it is being used);
filter_output.nc, which is the final posterior that could be used to restart
the OSSE process; and obs_seq.final, which adds the forward-calculated
expected values h*(**x*) for each observation. The obs_seq.final file can
be analyzed and binned by the obs_diag program, producing the file
obs_diag_output.nc which can be used for diagnostics.

#### Complex model workflow with an OSE

The second workflow is for a complex model with all ensemble members stored in
separate files running an OSE. In this case, DART will only operate on one
model output at a time. External programs will advance the model states,
generate the observations, and call DART again. The following diagram in shows
the high-level DART flow in this case:

<img src=”../images/DART_workflow.png” width=”500” alt=”DART flow with netCDF files” /><br />

Within a single time step, DART will use the filter program to run the
“Assimilate” portion of the above diagram and/or the “diagnostics” as follows:

<img src=”../images/complex_model_workflow.jpg” width=”500” alt=”OSE workflow with separate files” /><br />

The single time-step workflow for an OSE experiment within a single step is
slightly simpler than the OSSE equivalent as DART handles less of the process.
Like the OSSE case, the namelist and preprocessed observation source files are
input to all other DART programs. In the OSE case, however, the user must
provide an obs converter that will output a obs_seq.out file. There are
many DART utilities to make this process easier, but for the OSE case the
obs_seq.out file is ultimately the user’s responsibility (to avoid
duplicating effort, see the list of existing observation types in
[Important capabilities of DART](#dartCapabilities)). Here, the option to
run with one file for each ensemble member is demonstrated. There are k
ensemble members used as input to filter, which also outputs k members for
the prior and posterior. The obs_seq.final and obs_diag_output.nc are used
in the same way as in the OSSE case. The names of the input files and output
files can be controlled by the user through the filter_input_list.txt and
filter_output_list.txt files, which can contain the user-specified list of
the ensemble input or output files, respectively.

Another view of the stages of filter is shown in the following diagram:

<img src=”../images/diag_cycle.png” width=”500” alt=”Filter stages” /><br />

As shown here, an ensemble forecast is stored in forecast.nc ,
to which prior inflation can be applied and stored in preassim.nc. Once
assimilation is applied, the output can be stored in postassim.nc, and
finally if posterior inflation is applied, the final analysis can be written in
analysis.nc . The model forecast will start from the analysis to advance the
model in order to start the cycle over again.


	dart

	NOTE: the “forecast” will be the same as the “preassim”





if prior inflation is not used, and the “postassim” will be the same
as the “analysis” if posterior inflation is not used.
The stages_to_write variable in the “&filter_nml”
section of the input.nml namelist controls which stages are output to file.
For a multi-file case, the potential stages_to_write are “input, forecast,
preassim, postassim, analysis, output” while for a single file the same stages
are available with the exception of “input.”


	dart

	NOTE: in the above cycling diagram, there will actually be one file per





member, which is not shown here in order to simplify the process.


	exclamation

	IMPORTANT: the decision to store ensemble members as separate





files and whether to run an OSSE or OSE are independent. An OSSE can be run
with multiple files and an OSE can be run with all ensemble members stored in
a single file.

<span id=”dartDesign” class=”anchor”></span> [](#dartDesign)

### DART’s design philosophy

In this section we cover DART’s design philosophy. Understanding this philosophy
will make it easier to get started with DART, as you will quickly be able to
predict how and where to find a particular feature of DART.

The main design goals of DART are to:


	Create a system that is coherent and easy to understand. DART is carefully engineered to have self-contained programs that each do one job and do it well. Likewise, DART just does DA, and does it well.


	Release source code that is as compatible as possible with the widest possible number of systems. The code is written in Fortran 90, which is one of the lowest possible common denominators available on virtually all systems. See the section [Why Fortran?](#whyFortran) if this seems like a questionable decision to you in this modern world of Matlab, C++, Java, Python, Go, etc.


	Strive to limit library dependencies. There is only one required dependency of DART: netCDF. Many modern systems have 10s or 100s of dependencies, each of which introduces complexity and the potential for bugs, lack of support,  broken backwards compatibility, etc. If you’ve ever been frustrated struggling to debug relationships to packages you’ve never even heard of, you are likely to appreciate this DART design goal. Of course, there is nothing to stop you from using whatever dependencies you require, for example, to collect observations for the obs_seq.out in an OSE case, but DART by design will remain separate from that dependency for you and all other users.


	Only compile the code you need. If you are only using a single model for your experiments, there is no reason to compile or even touch code for another model you never plan to use. Likewise, if you are not using a particular observation operator in your experiment, there is also no need to compile it or let it cause you headaches. DART recognizes this fact, and through the use of the mkmf utility and the preprocess program, only what you need will ever be compiled.


	Use explicit interfaces to enforce contract programming. In practice this means that it is easy to add new models, observations operators, data assimilation algorithms, etc. as long as they can implement the required interface. This approach allows all of the benefits of object-oriented programming without the added complexity for the end user.


	Provide results that are reliable and meaningful. The DART algorithms are carefully tested and maintained in order to be quickly published along with appropriate analysis. In a world of chaos, being able to quantify and shrink forecast uncertainty via data assimilation in a reliable way is a valuable tool for research and operations and everything in between.




In short, DART is designed at each step to make it as easy as possible for
users to get up and running with their models, observations, and possibly even
data assimilation algorithm advances.

<span id=”whyFortran” class=”anchor”></span> [](#whyFortran)

#### Why Fortran?

Many users new to scientific computing such as graduate students raise their
eyebrows when they first hear that a program uses Fortran for active
development. Fortran is considered by many outside (and some inside) of the
scientific computing community to be a dinosaur, old and decrepit, and not
worthy of serious attention. However, this view is short-sighted. There is a
Chinese idiom 喜新厭舊, which means “to love the new and loathe the old,”
indicating that just because something is old does not automatically make it
bad.

While Fortran does have some outdated features that are far removed from the
mainstream of software engineering (such as implicit typing by first initial of
the variable), these can all be disabled, and the stylistic rules for
easy-to-read, modern Fortran are always followed by DART. On the other hand,
Fortran has many other attractive features that make it a top choice for modern
scientific computing. In particular, Fortran offers vectorization of matrices
that make it possible to operate on entire elements of an array at once or
perform linear algebra operations on multi-dimensional arrays. With or without
the use of the colon operator (:), Fortran multi-dimensional array support
makes mathematical algorithms easier to read than the equivalent code written
in many other languages. This highly intuitive Fortran syntax was adopted by
Matlab, NumPy, and other languages. Furthermore, for parallel programs using
distributed memory in MPI, Fortran remains a top choice along with C and C++
when considering performance. Python code, for example, remains difficult to
parallelize via MPI, not to mention the difficulties in supporting
Python 2, Python 3, pip, anaconda, virtualenv, …

Altogether, for large mathematically-oriented programs that need to be
parallel, Fortran remains a top choice, especially considering the needs of
DART:


	DART does data assimilation, which is primarily mathematically-oriented operations on large data sets.


	DART needs to be parallel with MPI to run on modern supercomputers.


	Many users of DART are not software development professionals and appreciate straightforward and easily understandable code.




4. DART source distributions should be easy to compile and run reliably on many
different systems. In practice this means avoiding software features that might
not be supported on all compilers or systems.

With these considerations in mind, the choice of Fortran for DART development
is clear. DART remains highly successful by keeping things simple and not
fixing what is not broken even if it isn’t shiny and new.

<span id=”dartCapabilities” class=”anchor”></span> [](#dartCapabilities)

### Important capabilities of DART

In this section we discuss the capabilities of DART that may be of interest to
the user. This is a partial list of all of the functionality that is available
in DART, and additional capabilities and improvements are continually being
added.

As mentioned above, DART allows for both OSSE and OSE systems of models large
and small. This allows users to test both theoretical limits of DA, models, and
observations with idealized experiments as well as to improve actual real-world
forecasts of chaotic systems with real observations.

#### Models supported by DART

A full list of models can be found [here](Models.md), but in brief the
models supported by DART include:


Model            | Latest version | Model            | Latest version |

:——-         | :———-    | :——-         | :———-    |

lorenz_63        |  Manhattan     | lorenz_84        |  Manhattan     |

lorenz_96        |  Manhattan     | lorenz_96_2scale |  Manhattan     |

lorenz_04        |  Manhattan     | simple_advection |  Manhattan     |

bgrid_solo       |  Manhattan     | WRF              |  Manhattan     |

MPAS             |  Manhattan     | ATM              |  Manhattan     |

ROMS             |  Manhattan     | CESM             |  Manhattan     |

CAM-FV           |  Manhattan     | CAM-CHEM         |  Manhattan     |

WACCM            |  Manhattan     | WACCM-X          |  Manhattan     |

CICE             |  Manhattan     | CM1              |  Manhattan     |

FESOM            |  Manhattan     | NOAH-MP          |  Manhattan     |

WRF-Hydro        |  Manhattan     | GCCOM            |  Lanai         |

LMDZ             |  Lanai         | MITgcm_ocean     |  Lanai         |

NAAPS            |  Lanai         | AM2              |  Lanai         |

CAM-SE           |  Lanai         | CLM              |  Lanai         |

COAMPS           |  Lanai         | COSMO            |  Lanai         |

Dynamo           |  Lanai         | GITM             |  Lanai         |

Ikeda            |  Lanai         | JULES            |  Lanai         |

MPAS_ocean       |  Lanai         | null_model       |  Lanai         |

openggcm         |  Lanai         | PARFLOW          |  Lanai         |

sqg              |  Lanai         | TIE-GCM          |  Lanai         |

WRF-CHEM         |  Lanai         | ECHAM            |  Prior to Lanai|

PBL_1d           |  Prior to Lanai| MITgcm_annulus   |  Prior to Lanai|

forced_barot     |  Prior to Lanai| pe2lyr           |  Prior to Lanai|

ROSE             |  Prior to Lanai| CABLE            |  Prior to Lanai|



The models listed as “Prior to Lanai” will take some additional work to
integrate with a supported version of DART; please contact the dart @ ucar.edu
team for more information. The versions listed as “Lanai” will be ported to the
Manhattan version of DART depending on the needs of the user community as well
as the availablity of resources on the DART team.

<span id=”obsConverters” class=”anchor”></span> [](#obsConverters)

#### Observation converters provided by DART

Given a way to compute the expected observation value from the model
state, in theory any and all observations can be assimilated by DART through the
obs_seq.out file. In practice this means a user-defined observation converter
is required. DART provides many observation converters to make this process
easier for the user. Under the directory DARTHOME/observations/obs_converters
there are multiple subdirectories, each of which has at least one observation
converter. The list of these directories is as follows:


Observation                                       | Directory      | Format  |

:——-                                          | :———-    | :—— |

[Atmospheric Infrared Sounder](https://airs.jpl.nasa.gov/) satellite retrievals | AIRS           | HDF-EOS |

[Aviso](https://www.aviso.altimetry.fr/en/home.html): satellite derived sea surface height       | Aviso          | netCDF  |

Level 4 Flux Tower data from [AmeriFlux](http://ameriflux.lbl.gov)  | Ameriflux      | Comma-separated text |

Level 2 soil moisture from [COSMOS](http://cosmos.hwr.arizona.edu/)  | COSMOS      | Fixed-width text   |

Doppler wind lidar | DWL      | ASCII text |

GPS retrievals of precipitable water | GPSPW      | netCDF |

GSI observation file | GSI2DART      | Fortran binary |

Global Temperature-Salinity Profile Program ([GTSPP](http://www.nodc.noaa.gov/GTSPP/index.html)) | GTSPP      | netCDF |

Meteorological Assimilation Data Ingest System ([MADIS](http://madis.noaa.gov/)) | MADIS      | netCDF |

[MIDAS](https://www.sciencedirect.com/science/article/pii/S0273117712001135) ionospheric obs | MIDAS      | netCDF |

[MODIS](https://modis.gsfc.nasa.gov/) satellite retrievals | MODIS      |  Comma-separated text  |

[NCEP PREPBUFR](https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm) | NCEP/prep_bufr | PREPBUFR |

NCEP ASCII observations | NCEP/ascii_to_obs | NCEP text files |

[ROMS](https://www.myroms.org/) verification observations | ROMS | netCDF |

Satellite winds from [SSEC](https://www.ssec.wisc.edu/data/) | SSEC | ASCII text |

Sea surface temperature | SST | netCDF |

Special Sensor Ultraviolet Spectrographic Imager ([SSUSI](https://ssusi.jhuapl.edu/)) retrievals | SSUSI | netCDF |

World Ocean Database ([WOD](http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html)) | WOD | World Ocean Database packed ASCII |

[National Snow and Ice Data Center](http://nsidc.org/) sea ice obs | cice | Binary sea ice |

VTEC [Madrigal](http://millstonehill.haystack.mit.edu/) upper atmospheric obs | gnd_gps_vtec | ASCII text |

GPS obs from [COSMIC](http://www.cosmic.ucar.edu) | gps | netCDF |

Oklahoma [Mesonet](http://www.mesonet.org/) MDF obs | ok_mesonet | Oklahoma Mesonet MDF files |

[QuikSCAT](http://winds.jpl.nasa.gov/missions/quikscat/index.cfm) scatterometer winds | quikscat | HDF 4 |

Radar reflectivity/radial velocity obs | Radar |  WSR-88D (NEXRAD) |

[MODIS Snowcover Fraction](https://modis.gsfc.nasa.gov/data/dataprod/mod10.php) obs | snow | General text |

Text file (e.g. spreadsheet) obs | Text | General text |

Total precipitable water from <a href=”http://aqua.nasa.gov/”>AQUA</a> | tpw | HDF-EOS |

Automated Tropical Cyclone Forecast ([ATCF](https://www.nrlmry.navy.mil/atcf_web/)) obs | Tropical Cyclones | Fixed width text |

[LITTLE_R](http://www2.mmm.ucar.edu/mm5/On-Line-Tutorial/little_r/little_r.html) obs | var | little-r |

[MM5](http://www2.mmm.ucar.edu/mm5/) 3D-VAR radar obs | var | MM5 3D-VAR 2.0 Radar data files |



#### Data assimilation algorithms available in DART

DART allows users to test the impact of using multiple different types of
algorithms for filtering, inflation/deflation, and covariance localization.

DART offers numerous filter algorithms. These determine
how the posterior distribution is updated based on the observations and the
prior ensemble. The following table lists the filters supported in DART along with their type (set by filter_kind in input.nml under the “assim_tools_nml” section):


Filter # | Filter Name                              | References  |

:——- | :———-                              | :———- |

1        | EAKF (Ensemble Adjustment Kalman Filter) | Anderson, J. L., 2001. An Ensemble Adjustment Kalman Filter for Data Assimilation. Monthly Weather Review, 129, 2884-2903. https://doi.org/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2. <br/><br/>**Anderson, J. L.**, 2003. A local least squares framework for ensemble filtering. Monthly Weather Review, 131, 634-642. https://doi.org/10.1175/1520-0493%282003%29131%3C0634%3AALLSFF%3E2.0.CO%3B2<br/><br/>**Anderson, J., Collins, N.**, 2007: Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation. Journal of Atmospheric and Oceanic Technology, 24, 1452-1463. https://doi.org/10.1175/JTECH2049.1  |

2        | ENKF (Ensemble Kalman Filter)            | Evensen, G., 2003.  The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dynamics. 53(4), 343–367. https://doi.org/10.1007%2Fs10236-003-0036-9 |

3        | Kernel filter                            | |

4        | Observation Space Particle filter        | |

5        | Random draw from posterior | None. <br/>:exclamation: IMPORTANT: (contact dart @ ucar.edu before using) |

6        | Deterministic draw from posterior with fixed kurtosis | None. <br/>:exclamation: IMPORTANT: (contact dart @ ucar.edu before using) |

7        | Boxcar kernel filter | |

8        | Rank Histogram filter | Anderson, J. L., 2010. A Non-Gaussian Ensemble Filter Update for Data Assimilation. Monthly Weather Review, 139, 4186-4198. https://doi.org/10.1175/2010MWR3253.1  |

9        | Particle filter | Poterjoy, J., 2016. A localized particle filter for high-dimensional nonlinear systems. Monthly Weather Review, 144 59-76. https://doi.org/10.1175/MWR-D-15-0163.1  |



DART also has several inflation algorithms available for both prior (the
first value in the namelist) and posterior (the second value in the namelist).
The following table lists the inflation “flavors” supported in DART along with
their type number (set by inf_flavor in input.nml under the “filter_nml” section):


Flavor # | Inflation flavor name                    | References  |

:——- | :———-                              | :———- |

0        | No inflation                             | n/a         |

1        | (Not Supported)                          | n/a         |

2        | Spatially-varying state-space (Gaussian) | Anderson, J. L., 2009.
Spatially and temporally varying adaptive covariance inflation for ensemble filters.
Tellus A, 61, 72-83, https://doi.org/10.1111/j.1600-0870.2008.00361.x |

3        | Spatially-fixed state-space (Gaussian)   | Anderson, J. L., 2007. An adaptive covariance inflation error correction algorithm for ensemble filters.
Tellus A, 59, 210-224, https://doi.org/10.1111/j.1600-0870.2006.00216.x |

4        | Relaxation to prior spread (posterior inflation only) |  Whitaker, J.S. and T.M. Hamill, 2012. Evaluating Methods to Account for System Errors in Ensemble Data Assimilation. Monthly Weather Review, 140, 3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1 |

5        | Enhanced spatially-varying state-space (inverse gamma) | El Gharamti M., 2018.
Enhanced Adaptive Inflation Algorithm for Ensemble Filters. *



Monthly Weather Review*, 2, 623-640, https://doi.org/10.1175/MWR-D-17-0187.1 |

DART also offers the ability to correct for sampling errors. DART’s
localization and sampling error correction algorithm is described in
> > Anderson, J.L., 2012. Localization and Sampling Error Correction in
Ensemble Kalman Filter Data Assimilation. Monthly Weather Review, 140,
2359–2371. https://doi.org/10.1175/MWR-D-11-00013.1

This behavior can be turned on or off via the sampling_error_correction in input.nml under the “assim_tools_nml” section. The following covariance localization options are available (set by select_localization in
input.nml under the “cov_cutoff_nml” section):


Loc #    | Localization type                 | References  |

:——- | :———-                       | :———- |


1 | Gaspari-Cohn eq. 4.10             | Gaspari, G. and Cohn, S. E., 1999. Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125, 723-757. https://doi.org/10.1002/qj.49712555417 |

2 | Boxcar                           | None |

3 | Ramped boxcar                    | None |





The following image depicts all three of these options:
<img src=”../images/cutoff_fig.png” width=”500” alt=”localization”>

<span id=”citeDart” class=”anchor”></span> [](#citeDart)

### How to cite DART

In order to cite DART, it is appropriate to cite the DART code itself, which
has a doi number, as: The Data Assimilation Research Testbed (Version X.Y.Z) [Software]. (2019). Boulder, Colorado: UCAR/NCAR/CISL/DAReS. http://doi.org/10.5065/D6WQ0202


	exclamation

	IMPORTANT: Update the DART version and year as appropriate.





The seminal reference for DART is:

> > Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn and A. Arellano, 2009. The Data Assimilation Research Testbed: A Community Facility. Bulletin of the American Meteorological Society, 90, 1283-1296, https://doi.org/10.1175/2009BAMS2618.1

You should also consider citing the algorithm(s) you are using. The citations
for algorithms are available in
[Important capabilities of DART](#dartCapabilities).



<span id=”RunWithMyModel” class=”anchor”></span> [](#RunWithMyModel)

## How do I run DART with my model?

[[top](#top)]

In this section, we describe how to add a model to DART. Essentially, this
comes down to implementing a list of required subroutines or using the default
behaviors if appropriate. To cycle more complex models, additional scripting
may be required, especially if the model is run on a supercomputing queueing
system. Refer to your model’s documentation for more information if
necessary.

The following sections cover how to run DART with your model (simple or
complex):


	[Required model_mod routines](#requiredRoutines)


	[Suggestions for a “simple” model](#simpleModel)


	[Suggestions for a “complex” model](#complexModel)


	[How to test your model_mod routines](#howToTestModelMod)




<span id=”requiredRoutines” class=”anchor”></span> [](#requiredRoutines)

### Required model_mod routines

There are 18 Fortran subroutines necessary to implement in
order to successfully integrate a model in DART. You will place these routines
in your model_mod.f90 in a subdirectory with the name of your model in
DARTHOME/models. There is often a sensible default implementation that can be
used for each of these routines. For example, in the case of a model that
starts at a time of “0”, for the required routine init_time() the following
code will use this default implementation:

~~~
use default_model_mod,     only : init_time
~~~
As in all Fortran programs, a comma-separated list of routines can be listed
after the colon.


	exclamation

	IMPORTANT: do not “use” the entire module without the





keyword “only” in order to avoid including the default behavior for all
subroutines contained in that module (in this example default_model_mod).

The following table lists each of the 18 routines, their default modules
relative to DARTHOME, and the default behavior. If the default behavior is
not desired, see the section [How to add a “simple” model](#simpleModel) for a
model that DART can advance, or [How to add a “complex” model](#complexModel)
for a model that is advanced externally from DART.


Routine # / name | Purpose                           | Default module / directory | Default behavior      |

:———-    | :——————————   | :——————————–  | :——————-  |

1. init_time()  | Set the initial time if not read from the restart file. | default_model_mod / models/utilities | Sets the initial time to 0 days, 0 seconds |

2. init_conditions()      | For a “cold start” fill in an empty state vector with initial conditions. Many models cannot just make up values from thin air and thus choose to fail when this is requested. | default_model_mod / models/utilities | Sets the initial state to 0. To fail use init_conditions => fail_init_conditions. |

3. get_model_size()  | Return the number of items in the state vector. | default_model_mod / models/utilities | Returns 1; i.e. there is only one item in the state. |

4. static_init_model()  | Initialize DART with information about the model that will be used by the remaining model_mod routines. The procedure for doing this will depend on how complex the model is; see below for suggestions for implementation. | default_model_mod / models/utilities | Does nothing. |

5. get_state_ meta_data()  | Takes an index into the state vector and returns the location corresponding to that value and optionally the variable type. See below for suggestions on implementation.   | default_model_mod / models/utilities | Sets a missing location and the default variable type. |

6. end_model()  | Deallocate any arrays allocated in static_init_model(). | default_model_mod / models/utilities | Does nothing. |

7. adv_1step()  | If possible, advance the model state from one time to another. Complex models will be unable to implement this method and should fail. | default_model_mod / models/utilities | Call the error handler with the message “unable to advance model”. |

8. shortest_time_ between_assimilations()  | Return a namelist or a fixed value for the minimum model advance time between assimilations. Note that complex models will handle advancing the time externally. | default_model_mod / models/utilities | Returns a time period of 1 day. |

9. model_interpolate()  | Interpolate a requested quantity to the given location to get an array of expected values for all ensemble members. <br/>*NOTE*: this is often the most time consuming method to implement. | default_model_mod / models/utilities | Fail and set the expected observation to “missing.” |

10. nc_write_ model_atts()  | Add any additional information to the netCDF output diagnostic files. NOTE: the state will already be output by other routines, so this method should not create or write the state variables. | default_model_mod / models/utilities | Does nothing. |

11. read_model_time()          | Read the model time from a state vector netCDF file. | dart_time_io / assimilation_code/io/utilities | Attempt to read the “time” variable from a state file in an intelligent way. |

12. write_model_time()      | Write the model time to a state vector netCDF file. | dart_time_io / assimilation_code/io/utilities | Write the “time” variable from the file according to the DART calendar. |

13. pert_model_copies()     | Perturb a state vector in order to create an ensemble. | default_model_mod / models/utilities | Add Gaussian noise with a specified amplitude to all parts of the state vector. |

14. convert_ vertical_obs() | Some 3D models have multiple vertical coordinates (e.g. pressure, height, or model level); this method converts observations between different vertical coordinate systems. | location_mod/ assimilation_code/ location/XXX | Do no conversion. <br/>*NOTE*: the particular sub-directory of location to use is set in path_names_<program> for each DART program. |

15. convert_ vertical_state() | Some 3D models have multiple vertical coordinates (e.g. pressure, height, or model level); this method converts state between different vertical coordinate systems. | location_mod/ assimilation_code/ location/XXX | Do no conversion. <br/>*NOTE*: the particular sub-directory of location to use is set in path_names_<program> for each DART program. |

16. get_close_obs() | Calculate which observations are “close” to a given location and, optionally, the distance. This is used for localization to reduce sampling error. | location_mod/ assimilation_code/ location/XXX | Uses the default behavior for determining distance. <br/>*NOTE*: the particular sub-directory of location to use is set in path_names_<program> for each DART program. |

17. get_close_state() | Calculate which state points are “close” to a given location and, optionally, the distance. This is used for localization to reduce sampling error. | location_mod/ assimilation_code/ location/XXX | Uses the default behavior for determining distance. <br/>*NOTE*: the particular sub-directory of location to use is set in path_names_<program> for each DART program. |

18. nc_write_ model_vars() | This method is not currently called, so just use the default routine for now. This method will be used in a future implementation. | default_model_mod / models/utilities | Does nothing. |



<span id=”simpleModel” class=”anchor”></span> [](#simpleModel)

### Suggestions for a “simple” model

A “simple” model is one where DART can advance the model through a function
call. As we saw above, Lorenz 63 falls into this category and can be used
as a reference. Here we provide some further advice on how to add this kind
of model to DART.

The primary consideration with a simple model is how you will store the
state. If you have only a single type of variable in your state vector
(for example, the Lorenz 63 model), here are some hints on how to implement
your initialization and meta data routines:


Routine # / name | Suggested implementation  |

:———-    | :——————————   |

4.    static_init_ model()        | Your model_size will likely be set by namelist, so read it, allocate an array of that size, and precompute all the locations for each state vector item. Call add_domain() with the model size so DART knows how long the state vector is. |

5.    get_state_ meta_data()      | Return QTY_STATE_VARIABLE as the quantity, and return the location for that index through a look-up into the location array created during static_init_ model().



If you have more than a single type of variable in the state vector (for
example, “concentration”, “wind”, etc. as in the
DARTHOME/models/simple_advection model):


Routine # / name | Suggested implementation  |

:———-    | :——————————   |

4.    static_init_ model()        | Read from the namelist the number of fields to be used in the state vector. Use add_domain() to indicate which netCDF vars should be read. Read in any auxiliary data needed by interpolation code (for example, the grid topology). Cache the grid locations of the state variables as appropriate, and use get_domain_size() to compute the model_size. |

5. get_state_ meta_data() | Call get_model_variable_indices() and get_state_kind() to figure out the (i,*j*,*k*) indices and which variable this offset is. Use the (i,*j*,*k*) index to compute the grid location and return it along with the quantity. |



Now, for either type of simple model, the following applies:


Routine # / name | Suggested implementation  |

:———-    | :——————————   |

6. end_model() | Deallocate any arrays allocated in static_init_model() |

7. adv_1step() | If possible, embed the code that computes **x**(t*+1) = **F**(**x**(*t)) or call a separate subroutine to advance the model state from one time to another. |

8. shortest_time_ between_assimilations() | Return a namelist or a fixed value for the minimum model advance time. |

9. model_interpolate() | Find the indices which enclose that location and interpolate to get an array of expected values. |

10. nc_write_model_atts() | Optionally add any desired attributes to the output diagnostic files. |



The remaining routines can mostly use the defaults, except possibly for 11. read_model_time() and 12. write_model_time(), which may need to be customized
if using a model restart file that already stores time in a particular format.

Note that there is often no need to convert vertical obs or states in a simple
model without vertical coordinate choices.

<span id=”complexModel” class=”anchor”></span> [](#complexModel)

### Suggestions for a “complex” model

A “complex” model is typically a large geophysical model where the model must
be advanced outside of DART execution control. Here we provide some advice on
how to integrate this kind of model with DART.

First of all, the 4. static_init_model, 5. get_state_meta_data() and
6. end_model() suggestions will match the multiple state variable in the
previous section as complex models will typically have multiple fields.

An additional twist is that complex models may have different grid locations
for different variables, (i.e. grid staggering), but the above instructions
still apply.

The 7. adv_1step() method for a complex model should fail, so the default
behavior is sufficient.

The advice for the 8. shortest_time_between_assimilations() routine is
similar to the advice for a simple model: read the value from the namelist or
return a fixed time as appropriate.


	dart

	NOTE: since the model will not be advanced by DART, the value returned





here is irrelevant except for user information purposes.

For the remaining routines, we give the following implementation suggestions:


Routine # / name | Suggested implementation  |

:———-    | :——————————   |

9. model_ interpolate() | Find the (i,*j*,*k*) indices which enclose that location, or search for the cell number. For some models you can compute (i,*j*) directly from a regular lat/lon grid, and in others you may have to search over a deformed grid. Any model code or utilities available for this purpose may prove very helpful as a starting point. In the end, you will use get_state() to retrieve an ensemble-sized array of values for each offset into the state vector, and then do interpolation to get an array of expected values. |

10. nc_write_ model_atts() | It is very helpful (but optional) to add grid information to assist in plotting your results. |

11.   read_model_ time()    | (see write_model_time() below) |

12.   write_model_ time() | If the model time is stored in the netCDF files, supply routines that can read and write it in the correct format. The default routines will work if the model time matches what those routines expect: a time variable with an optional calendar variable. If no calendar is provided, the routine assumes fractional days. If the time variable is an array (i.e. more than one time step is stored in the file), read/write the last one. |

13. pert_model_ copies()    | The default of adding Gaussian noise to all state variables may be undesirable. Complex models often have a method to perturb a state according to a particular formula or method. Otherwise, it may be necessary to perturb each variable with separate noise levels, only perturb certain variables, etc. |

14. convert_ vertical_obs() | (see convert_vertical_state() below)|

15. convert_ vertical_state() | Add code to convert between vertical coordinates (e.g. pressure, height, sigma levels, etc.) if appropriate. Code from the model or a model utility may be a very helpful starting point. |

16. get_close_ obs() | (see get_close_state() below) |

17. get_close_ state() | If you want to change the localization impact based on something other than the type or kind, put code here. You should test for vertical type and do the conversion on demand if it hasn’t already been done. |



As mentioned above, the most difficult routine to implement for a complex model
is typically  9. model_interpolate().

<span id=”howToTestModelMod” class=”anchor”></span> [](#howToTestModelMod)

### How to test your model_mod routines

The program model_mod_check.f90 can be used to test the routines individually
before running them with filter. Add a mkmf_model_mod_check and
path_names_model_mod_check to your DARTHOME/models/your_model/work
subdirectory. You might find it helpful to consult another model matching your
model type (simple or complex). See the documentation for model_mod_check in
DARTHOME/assimilation_code/programs/model_mod_check for more information on
the tests available.



<span id=”RunWithMyObs” class=”anchor”></span> [](#RunWithMyObs)

## How do I add my observations to DART?

[[top](#top)]

In this section we introduce how to add your observations to DART.


	[Background on DART observations](#obsBackground)


	[Simple observation definitions](#simpleObs)


	[Obs definitions for observations needing special handling](#complexObs)


	[Example observation definition](#exampleObsDef)


	[Observation sequence file](#obsSeqFile)




<span id=”obsBackground” class=”anchor”></span> [](#obsBackground)
### Background on DART observations

The Iceland release of DART added a powerful and flexible mechanism to generate
the core observation operator code on the fly using the preprocess program.
The use of the preprocess program was covered above in
[Building the Lorenz_63 DART project](#building) and
[High-level DA workflows in DART](#dartWorkflow), so it is assumed you are
familiar with the basic workings of the preprocess program before continuing.

To add your own observations, you will need to create an observation
definition. The DART Fortran90 derived type obs_def provides an abstraction
of the definition of an observation. At a higher level, an observation
sequence (obs_seq) is composed of observation definitions associated with
observed values. The basic operations required to implement an observation
definition are an ability to compute a forward operator given the model state
vector, the ability to read/write the observation definition from/to a file,
and a capability to do a standard input driven interactive definition of the
observation definition.

DART makes a further distinction between specific observation types and
generic quantities. The role of the various obs_def input files
is to define the mapping between the types and quantities, and optionally to
provide type-specific processing routines.

A single obs_def output module is created by the program preprocess from two
kinds of input files. First, a DEFAULT obs_def module (normally called
DEFAULT_obs_def_mod.F90 and documented in the
DARTHOME/observations/forward_operators directory) is used as a template into
which the preprocessor incorporates information from zero or more special
obs_def modules (for example, obs_def_1d_state_mod.f90 or
obs_def_reanalysis_bufr_mod.f90) as documented in the
DARTHOME/observations/forward_operators directory. If no special obs_def
files are included in the preprocessor namelist, a minimal obs_def_mod.f90 is
created which can only support identity forward observation operators.

To add a new observation type which does not fit into any of the
already-defined obs_def files, a new file should be created in the
DARTHOME/observations/forward_operators directory.
These files are usually named according the the pattern obs_def_X_mod.f90,
where the X is either an instrument name, a data source, or a class of
observations. See the existing filenames in that directory for ideas. This new
obs_def filename must then be listed in the input.nml namelist for the model
in the &preprocess_nml section in the input_files namelist variable. This
variable is a string list type which can contain multiple obs_def filenames.
Running the preprocess program will then use the contents of the new obs_def
file to generate the needed output files for use in linking to the rest of the DART system.

<span id=”simpleObs” class=”anchor”></span> [](#simpleObs)
### Simple observation definitions

If the new observation type can be directly interpolated by the model_mod
model_interpolate() interpolation routine (see [Required model_mod routines](#requiredRoutines) for more information) and has no additional
observation-specific code for reading, writing, or initializing the
observation, then the entire contents of the new file is:

~~~
! BEGIN DART PREPROCESS KIND LIST
! type, quantity, COMMON_CODE
! (repeat lines for each type)
! END DART PREPROCESS KIND LIST
~~~

DART will automatically generate all the interface code needed for these new
observation types through preprocess. For example, here is a real list of
observation types:

~~~
! BEGIN DART PREPROCESS KIND LIST
!VELOCITY,                     QTY_VELOCITY,              COMMON_CODE
!TRACER_CONCENTRATION,         QTY_TRACER_CONCENTRATION,  COMMON_CODE
!TRACER_SOURCE,                QTY_TRACER_SOURCE,         COMMON_CODE
!MEAN_SOURCE,                  QTY_MEAN_SOURCE,           COMMON_CODE
!OI_SEA_SURFACE_TEMPERATURE,   QTY_TEMPERATURE,           COMMON_CODE
! END DART PREPROCESS KIND LIST
~~~

The first column is the specific observation type and should be unique. The
second column is the generic quantity and must match the list of known
quantities in obs_kind_mod.f90. The first and second column often match, but
as shown in the last line this need not be the case. The third column must be
the keyword COMMON_CODE which tells the preprocess program to automatically
generate all necessary interface code for this type. COMMON_CODE also implicitly
means the “model_interpolate()” routine is used as the forward operator.


	dart

	NOTE: to add a new quantity, the





DARTHOME/assimilation_code/modules/observations/DEFAULT_obs_kind_mod.F90 file
must be edited to include a unique integer identifier for the quantity.

<span id=”complexObs” class=”anchor”></span> [](#complexObs)
### Obs definitions for observations needing special handling

For observation types which have observation-specific routines, or must
interpolate using a combination of other generic quantities, or require
additional observation-specific data to compute, the following format is used:

~~~
! BEGIN DART PREPROCESS KIND LIST
! type, quantity
! (repeat lines for each type/quantity pair)
! END DART PREPROCESS KIND LIST
~~~

DART will need user-supplied interface code for each of the listed types. For
example, here is a real list without “COMMON_CODE” in the third column:

~~~
! BEGIN DART PREPROCESS KIND LIST
! DOPPLER_RADIAL_VELOCITY, QTY_VELOCITY
! RADAR_REFLECTIVITY,      QTY_RADAR_REFLECTIVITY
! END DART PREPROCESS KIND LIST
~~~


	dart

	NOTE: the difference between the simple obs_def case is the lack of





COMMON_CODE in the third column.
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“get_expected_wind_speed()” function for an example of a non-COMMON_CODE
observation type. The operator is in the DARTHOME/observations/forward_operators
directory.

In the non-COMMON_CODE case, DART needs additional information for how to process
the observation type. This will include code sections delimited by precisely formatted
comments, and possibly module code sections. This code will be combined by preprocess to
make a single observation definition file with only the desired observations.
There are six such locations within obs_def_XXX.f90 where a new forward
operator should make changes to meet the interface of obs_def.


	exclamation

	IMPORTANT: as the code in these six comment sections will be





automatically combined with the code of other observation definitions, the
majority of the forward operator code should be defined inside a separate
module to keep variables and other private subroutines from colliding with
unrelated routines and variables in other forward operator files. In other
words, the code in the sections below should primarily call procedures from a
separate module you define.

There are six sections of code inserted into the DEFAULT_obs_def_mod for
each of the obs_def modules that are requested. These are:

#### 1. Use statements

preprocess automatically collects and combines the use statements in all
observations definitions through the following comment block:

~~~
! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
~~~

Any Fortran use statements for public subroutines or variables from other
modules should be placed between these lines, with comment characters in the
first column.

For example, if the forward operator code includes a module with public
routines then a “use” statement like:


	~~~
	
	use obs_def_1d_state_mod, onlywrite_1d_integral, read_1d_integral, &
	interactive_1d_integral, get_expected_1d_integral









~~~

needs to be added to your obs_def_mod so the listed subroutines are available
to be called. This would look like:

~~~
! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
! use obs_def_1d_state_mod, only : write_1d_integral, read_1d_integral, &
!                                  interactive_1d_integral, get_expected_1d_integral
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
~~~

#### 2. Code to compute the expected observation

preprocess collects and combines the obs processing code for all
observations definitions through the following comment block:

~~~
! BEGIN DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF
! END DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF
~~~

These comments must enclose a case statement for each defined type that returns
the expected observation value based on the current values of the state vector.
The code must be in comments, with the comment character in the first column.

The variables available to be passed to subroutines or used in this section of
code are:


Variable name  | Intent | Description |

:———-    | :—– | :———- |


state_handle | In     | A handle to access the state vector (including all ensemble members) |

ens_size     | In     | The number of ensemble members to operate on  (between 1 and total ensemble size) |

copy_indices | In     | The indices the ensemble members (between 1 and total ensemble size) |

location     | In     | The observation location |

obs_type_ind | In     | The index of the specific type of observation |

obs_time     | In     | The time of the observation |

error_var    | In     | The observation error variance |

isprior      | In     | true for prior eval; false for posterior |





The routine must fill in the values of these variables:


Variable name  | Intent | Description                   |

:———-    | :—– | :———                    |

expected_obs   | Out    | The computed forward operator values (between 1 and ens_size) |

istatus            | Out    | Return code: 0=ok, >0 is error, <0 reserved for system use |



To call a model_mod interpolate routine directly, the argument list must match exactly:

~~~
interpolate(state, location, QTY_xxx, obs_val, istatus)
~~~
with the xxx replaced with the correct quantity.

This can be useful if the forward operator needs to retrieve values for fields
which are typically found in a model and then compute a derived value from them.

#### 3. Code to read the observation metadata

preprocess collects and combines the code to read the observation metadata
for all observations definitions through the following comment block:

~~~
! BEGIN DART PREPROCESS READ_OBS_DEF
! END DART PREPROCESS READ_OBS_DEF
~~~

These comments must enclose a case statement for each defined type that reads
any additional data associated with a single observation. If there is no
information beyond that for the basic obs_def type, the case statement must
still be provided, but the code can simply be “continue”. The code must be in
comments, with the comment character in the first column.

The variables available to be passed to subroutines or used in this section of
code are:


Variable name  | Intent     | Description              |

:———-    | :——— | :———               |

ifile                | In         | The open unit number positioned ready to read  |

obs_def            | Inout      | The rest of the obs_def derived type for this obs  |

key            | In         | The index observation number in this sequence (read-only) |

obs_val        | In         | The observation value, if needed |

is_ascii       | In         | Logical to indicate how the file was opened, formatted or unformatted |



The usual use of this routine is to read in additional metadata per observation
and to set the private key in the obs_def to indicate the metadata index to
use for this observation. Do not confuse the key in the obs_def with the key
argument to this routine; the latter is the global observation sequence number
for this observation.

#### 4. Code to write the observation metadata

preprocess collects and combines the code to write the observation metadata
for all observations definitions through the following comment block:

~~~
! BEGIN DART PREPROCESS WRITE_OBS_DEF
! END DART PREPROCESS WRITE_OBS_DEF
~~~

These comments must enclose a case statement for each defined type that writes
any additional data associated with a single observation. If there is no
information beyond that for the basic obs_def type, the case statement must
still be provided, but the code can simply be “continue.” The code must be in
comments, with the comment character in the first column.

The variables available to be passed to subroutines or used in this section of
code are:


Variable name  | Intent | Description                           |

:———-    | :—– | :———                            |

ifile                | In     | The open unit number positioned ready to write    |

obs_def          | In     | The rest of the obs_def derived type for this obs |

key            | In     | The index observation number in this sequence     |

is_ascii           | In     | A logical value to indicate how the file was opened, formatted or unformatted |



The usual use of this routine is to write the additional metadata for this
observation based on the private key in the obs_def. Do not confuse this with
the key in the subroutine call which is the observation number relative to the
entire observation sequence file.

#### 5. Code to interactively input the observation metadata

preprocess collects and combines the code to read input from the user for
the observation metadata for all observations definitions through the
following comment block:

~~~
! BEGIN DART PREPROCESS INTERACTIVE_OBS_DEF
! END DART PREPROCESS INTERACTIVE_OBS_DEF
~~~

These comments must enclose a case statement for each defined type that prompts
the user for any additional data associated with a single observation. If there
is no information beyond that for the basic obs_def type, the case statement
must still be provided, but the code can simply be continue. The code must be
in comments, with the comment character in the first column.

The variables available to be passed to subroutines or used in this section of
code are:


Variable name  | Intent | Description                   |

:———-    | :—– | :———                    |

obs_def            | Inout  | The rest of the obs_def derived type for this obs. |

key            | In     | The index observation number in this sequence. |



The DART code will prompt for the rest of the obs_def values (location, type,
value, error) but any additional metadata needed by this observation type
should be prompted to, and read from, the console (e.g. write(*,*), and
read(*,*)). The code will generally set the obs_def%key value as part of
setting the metadata.

#### 6. Code to preprocess the observations (optional)

preprocess collects and combines the code to preprocess the observation
for all observations definitions through the following comment block:

~~~
! BEGIN DART PREPROCESS MODULE CODE
! END DART PREPROCESS MODULE CODE
~~~

If the code to process this observation requires module data and/or
subroutines, then these comments must surround the module definitions.
Unlike all the other sections, this comment pair is optional, and
if used, the code must not be in comments; it will be copied verbatim over
to the output file.
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and should not be confused with the preprocess program that generates the
observation Fortran code.

<span id=”exampleObsDef” class=”anchor”></span> [](#exampleObsDef)

### Example observation definition

This section contains an example observation definition file. As shown here,
it is possible to mix automatic code types and user-supplied code types in the
same list. Simply add the COMMON_CODE keyword on the lines which need no
special data or interfaces. For example, here is an extract from the 1d state
obs_def module, where the raw state variable needs only autogenerated code, but
the 1d integral has user-supplied processing code:

~~~
! BEGIN DART PREPROCESS KIND LIST
! RAW_STATE_VARIABLE,    QTY_STATE_VARIABLE, COMMON_CODE
! RAW_STATE_1D_INTEGRAL, QTY_1D_INTEGRAL
! END DART PREPROCESS KIND LIST

! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
!   use obs_def_1d_state_mod, only : write_1d_integral, read_1d_integral, &
!                                    interactive_1d_integral, get_expected_1d_integral
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE

! BEGIN DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF
!         case(RAW_STATE_1D_INTEGRAL)
!            call get_expected_1d_integral(state, location, obs_def%key, obs_val, istatus)
! END DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF

! BEGIN DART PREPROCESS READ_OBS_DEF
!      case(RAW_STATE_1D_INTEGRAL)
!         call read_1d_integral(obs_def%key, ifile, fileformat)
! END DART PREPROCESS READ_OBS_DEF

! BEGIN DART PREPROCESS WRITE_OBS_DEF
!      case(RAW_STATE_1D_INTEGRAL)
!         call write_1d_integral(obs_def%key, ifile, fileformat)
! END DART PREPROCESS WRITE_OBS_DEF

! BEGIN DART PREPROCESS INTERACTIVE_OBS_DEF
!      case(RAW_STATE_1D_INTEGRAL)
!         call interactive_1d_integral(obs_def%key)
! END DART PREPROCESS INTERACTIVE_OBS_DEF

! BEGIN DART PREPROCESS MODULE CODE
module obs_def_1d_state_mod

use        types_mod, only : r8
use    utilities_mod, only : register_module, error_handler, E_ERR, E_MSG
use     location_mod, only : location_type, set_location, get_location
use  assim_model_mod, only : interpolate
use   cov_cutoff_mod, only : comp_cov_factor

implicit none


	public :: write_1d_integral, read_1d_integral, interactive_1d_integral, &
	get_expected_1d_integral





…  (module code here)

end module obs_def_1d_state_mod
! END DART PREPROCESS MODULE CODE
~~~

See the obs_def_1d_state_mod.f90 documentation for more details and examples
of each section. Also see obs_def_wind_speed_mod.f90 “get_expected_wind_speed()”
for an example of a 3D geophysical forward operator. Both operators are in the
DARTHOME/observations/forward_operators directory.

<span id=”obsSeqFile” class=”anchor”></span> [](#obsSeqFile)

### Observation sequence file creation

DART uses an observation sequence file that contains the observations to be
assimilated. An observation converter will convert observations from the
native observation format into this DART-specific format. Ultimately, it is the
user’s responsibility to convert the observations, but there are many helper
tools and utilities to make this process easier.
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readable ASCII or machine-readable binary. The binary representation will use
approximately two times less disk space, but the ASCII representation makes
manually inspecting the file contents much easier. For either representation,
the underlying data is the same. There is a setting in the DART input.nml
file under obs_sequence_nml called “write_binary_obs_sequence” that can be
used to write the format as either binary (“.true.”) or ASCII (“.false”).
When the observation sequence file is read, the format is detected
automatically.

For new obs converters, once you find what format the data is distributed in
you may be able to adapt one of the existing converters here for your own use.
Formats read by the existing converters include netCDF, HDF, LITTLE_R, text,
PREPBUFR, and many others. The section
[Observation converters provided by DART](#obsConverters) lists the converters
that are already available for DART and the formats of the files. The directory
of the observation converters is DARTHOME/observations/obs_converters.

If you have looked and none of the existing converters are right for your data,
here are some suggestions for where to start creating a new converter. Create a
new subdirectory in the obs_converters directory. Copy with the recursive
option (cp -r) one of the existing converters and adapt to your needs. Our
suggestions for which converter to start from depends on the format of your
input observations to be converted. The following table lists our
recommendations:


Native format  | Advice                        |

:———-    | :———                    |

netCDF         | Start with the MADIS converters, and in particular try the convert_madis_profiler.f90 file because it is the most straightforward. Another good option is SST/oi_sst_to_obs.f90. |

Comma separated text | Start with the Ameriflux converter. |

ASCII text     | Start with the text converter. |

HDF-EOS        | Start with the AIRS converter. |

BUFR or prepBUFR | Start with the NCEP converter. |

Dense data, like Satellite swaths | Start with the tpw converter, which includes code that averages the raw data in space and time. |

Ray-path integrated data | Start with the GPS converter, which includes code that traces a path and integrates values along the ray. |

World Ocean Database packed ASCII | Start with the WOD converter. |





<span id=”DartForEducation” class=”anchor”></span> [](#DartForEducation)

## How would I use DART for teaching students and/or myself?

[[top](#top)]

There are two main methods of learning DART beyond this document:


	[The DART tutorial](#dartTutorial)


	[DART_LAB](#dartLab)




<span id=”dartTutorial” class=”anchor”></span> [](#dartTutorial)

### The DART tutorial

The [DART Tutorial](Tutorial.md) outlines a step-by-step approach to the
concepts of ensemble data assimilation. A set of 26 PDF files guides the user
through a mathematical introduction to Data Assimilation and Ensemble
Kalman Filter concepts. If you’ve been able to build the Lorenz 63 model, you
have correctly configured your mkmf.template and you are now able to run all
of the programs required by the tutorial.

<span id=”dartLab” class=”anchor”></span> [](#dartLab)

### DART_LAB

[DART_LAB](../DART_LAB/DART_LAB.html) is a set of PDF presentation files and a
set of MATLAB® examples that comprise a fully self-contained introduction to
Data Assimilation and the Ensemble Kalman Filter concepts. These documents are
an excellent way to explore the ins-and-outs of DART and learn about ensemble data assimilation.



<span id=”ContributeToDart” class=”anchor”></span> [](#ContributeToDart)

## How can I contribute to DART?

[[top](#top)]

In this section we describe how you can contribute your work to DART. As an
open-source project, we welcome and value your contributions for the benefit
of the community. You may want to get in touch with us at dart @ ucar.edu
before going too far down the development path and make sure you are not
duplicating efforts.

DART development uses the public GitHub project available at
https://github.com/NCAR/DART. Before you get started on developing with us,
it’s probably a good idea to be familiar with the
[GitHub workflow](https://guides.github.com/introduction/flow/). Essentially,
you should create a fork of the DART project, which is a publically visible
copy of the repository that you will manage. Create a branch for your
feature with an appropriate name for your project, and when you are finished
with your changes you can commit them to your fork. After testing locally
on your machine, you can push them to your fork. At this point, everyone can
see the changes you made on your fork. When you are ready to begin the
conversation about merging your work into the original project (called the DART
repository master), you can create a pull request, which will show your
changes. After reviewing and testing your changes, the pull request will be
addressed appropriately by the DART development team.

<span id=”privateWorkflow” class=”anchor”></span> [](#privateWorkflow)

### What if I want my work to remain private until I publish?

Some DART users want to work on a private branch until their work is ready
for public viewing. To accommodate users with these concerns, we describe here an
additional step to temporarily “hide” sensitive code that is intended to be
eventually contributed to DART after publication.

The user interested in maintaining this privacy should create a public fork of
the DART repository as listed above and then create a private repository on
GitHub.com, following the steps listed here:
https://help.github.com/en/articles/create-a-repo. The name of this repo is
arbitrary. Now follow the steps at
https://help.github.com/en/articles/adding-a-remote to add the public fork as
a remote repository of the private repository. The remote name here could be
“public_fork” or “upstream.” Follow the usual steps for pulling/pushing to/from
your private repository as in
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

The user can then conduct their development on the private repository,
adding additional team members as necessary.
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private repository. The DART team is happy to collaborate with you on your
private repository, but keep the 3 collaborator limit in mind if you are a free
GitHub.com user.

[[top](#top)]
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## Adding your efforts to DART.

Please let us know if you have suggestions or code to contribute to
DART. We’re a small group, but we are willing to listen and will make
every effort to incorporate improvements to the code. Email us at
<dart@ucar.edu>.

## DART documentation

~~The DART distribution includes a full set of documentation. Once you
download DART, you may view the documentation offline by opening the
index.html file in the top-level DART directory.~~ If you want to
explore the documentation page without downloading DART, you may
[view the documentation for the Manhattan release](https://ncar.github.io/DART/api/v0.0.6/index.html).

## Links to major sections of this document:
- [Downloadable datasets for DART.](#datasets)
- [Creating initial conditions for DART](#creating_ics)
- [‘Perfect Model’ or ‘OSSE’ experiments](#perfect_osse)
- [Adding a model to DART](#adding_a_model)



# DART-supported models:

There are two broad classes of models supported by DART. Some are
‘low-order’ models, generally single-threaded, subroutine-callable, and
idealized: there are no real observations of these systems. The
other class of models are ‘high-order’ models. There are real
observations of these systems. Or at least, we like to think so …


	### Models that are ready to use with Manhattan:
	[lorenz_63](#lorenz_63)
[lorenz_84](#lorenz_84)
[9var](#NINEvar)
[lorenz_96](#lorenz_96)
[lorenz_96_2scale](#lorenz_96_2scale)
[forced_lorenz_96](#forced_lorenz_96)
[lorenz_04](#lorenz_04)
[simple_advection](#simple_advection)
[bgrid_solo](#bgrid_solo)
[WRF](#wrf)
[MPAS ATM](#mpas_atm)
[ROMS](#ROMS)
[CESM](#CESM)
[CAM-FV](#cam-fv)
[CAM-CHEM](#cam-chem)
[WACCM](#WACCM)
[WACCM-X](#WACCM-X)
[CICE](#CICE)
[POP](#POP)
[CM1](#CM1)
[FESOM](#fesom)
[NOAH-MP](#noah-mp)
[WRF-Hydro](#wrf-hydro)



	### Models supported in Lanai:
	[GCCOM](#GCCOM)
[LMDZ](#LMDZ)
[MITgcm_ocean](#MITgcm_ocean)
[NAAPS](#NAAPS)
[AM2](#AM2)
[CAM-SE](#cam-se)
[CLM](#CLM)
[COAMPS](#COAMPS)
[COSMO](#COSMO)
[dynamo](#dynamo)
[gitm](#gitm)
[ikeda](#ikeda)
[jules](#jules)
[mpas_ocean](#mpas_ocean)
[null](#null)
[openggcm](#openggcm)
[parflow](#parflow)
[sqg](#sqg)
[tiegcm](#tiegcm)
[wrf-chem](#wrf-chem)



	### Models that were used a long time ago (these may not take that much work to revive):
	[ECHAM](#ECHAM)
[PBL_1d](#PBL_1d)
[MITgcm_annulus](#MITgcm_annulus)
[forced_barot](#forced_barot)
[pe2lyr](#pe2lyr)
[ROSE](#rose)
[CABLE](#cable)
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## The ‘Manhattan-ready’ models in DART.

<span id=”lorenz_63” class=”anchor”></span>

### lorenz_63

This is the 3-variable model as described in: Lorenz, E. N.
1963. Deterministic nonperiodic flow. J. Atmos.
Sci. 20, 130-141.
The system of equations is:

~~~
X’ = -sigma*X + sigma*Y
Y’ = -XZ + rX - Y
Z’ =  XY -bZ
~~~

<span id=”lorenz_84” class=”anchor”></span>

### lorenz_84

This model is based on:   Lorenz E. N., 1984: Irregularity: A
fundamental property of the atmosphere. Tellus,  36A, 98-110.
The system of equations is:

~~~
X’ = -Y^2 - Z^2  - aX  + aF
Y’ =  XY  - bXZ  - Y   + G
Z’ = bXY  +  XZ  - Z
~~~

Where a, b, F, and G are the model parameters.

<span id=”NINEvar” class=”anchor”></span>

### 9var

This model provides interesting off-attractor transients that behave
something like gravity waves.

<span id=”lorenz_96” class=”anchor”></span>

### lorenz_96

This is the model we use to become familiar with new architectures,
i.e., it is the one we use ‘first’. It can be called as a subroutine or
as a separate executable. We can test this model both single-threaded
and mpi-enabled.

Quoting from the Lorenz 1998 paper:

> … the authors introduce a model consisting of 40 ordinary
> differential equations, with the dependent variables representing
> values of some atmospheric quantity at 40 sites spaced equally about a
> latitude circle. The equations contain quadratic, linear, and constant
> terms representing advection, dissipation, and external forcing.
> Numerical integration indicates that small errors (differences between
> solutions) tend to double in about 2 days. Localized errors tend to
> spread eastward as they grow, encircling the globe after about 14
> days.
> …
> We have chosen a model with J variables, denoted by X<sub>1</sub>,
> …, X<sub>J</sub>; in most of our experiments we have let J = 40. The
> governing equations are:
>
>
> ~~~
> dXj/dt = (Xj+1 - Xj-2)Xj-1 - Xj + F         (1)
> ~~~
>
>
> for j = 1, …, J. To make Eq. (1) meaningful for all values of j
> we define X<sub>-1</sub> = X<sub>J-1</sub>, X<sub>0</sub> =
> X<sub>J</sub>, and X<sub>J+1</sub> = X<sub>1</sub>, so that the
> variables form a cyclic chain, and may be looked at as values of some
> unspecified scalar meteorological quantity, perhaps vorticity or
> temperature, at J equally spaced sites extending around a latitude
> circle. Nothing will simulate the atmosphere’s latitudinal or vertical
> extent.

<span id=”lorenz_96_2scale” class=”anchor”></span>

### lorenz_96_2scale

This is the Lorenz 96 2-scale model, documented in Lorenz (1995). It
also has the option of the variant on the model from Smith (2001), which
is invoked by setting local_y = .true. in the namelist. The time
step, coupling, forcing, number of X variables, and the number of Ys per
X are all specified in the namelist. Defaults are chosen depending on
whether the Lorenz or Smith option is specified in the namelist. Lorenz
is the default model. Interface written by Josh Hacker. Thanks
Josh!

<span id=”forced_lorenz_96” class=”anchor”></span>

### forced_lorenz_96

The forced_lorenz_96 model implements the standard L96 equations
except that the forcing term, F, is added to the state vector and is
assigned an independent value at each gridpoint. The result is a model
that is twice as big as the standard L96 model. The forcing can be
allowed to vary in time or can be held fixed so that the model looks
like the standard L96 but with a state vector that includes the constant
forcing term. An option is also included to add random noise to the
forcing terms as part of the time tendency computation which can help in
assimilation performance. If the random noise option is turned off (see
namelist) the time tendency of the forcing terms is 0.

<span id=”lorenz_04” class=”anchor”></span>

### lorenz_04

The reference for these models is Lorenz, E.N., 2005: Designing chaotic
models. J. Atmos. Sci., 62, 1574-1587.
Model II is a single-scale model, similar to Lorenz 96, but with spatial
continuity in the waves. Model III is a two-scale model. It is
fudamentally different from the Lorenz 96 two-scale model because of the
spatial continuity and the fact that both scales are projected onto a
single variable of integration. The scale separation is achived by a
spatial filter and is therefore not perfect (i.e. there is leakage). The
slow scale in model III is model II, and thus model II is a deficient
form of model III. The basic equations are documented in Lorenz (2005)
and also in the model_mod.f90 code. The user is free to choose model II
or III with a Namelist variable.

<span id=”simple_advection” class=”anchor”></span>

### simple_advection

This model is on a periodic one-dimensional domain. A wind field is
modeled using Burger’s Equation with an upstream semi-lagrangian
differencing. This diffusive numerical scheme is stable and forcing is
provided by adding in random gaussian noise to each wind grid variable
independently at each timestep. An Eulerian option with
centered-in-space differencing is also provided. The Eulerian
differencing is both numerically unstable and subject to shock
formation. However, it can sometimes be made stable in assimilation mode
(see recent work by Majda and collaborators).

<span id=”bgrid_solo” class=”anchor”></span>

### bgrid_solo

This is a dynamical core for B-grid dynamics using the Held-Suarez
forcing. The resolution is configurable, and the entire model can be run
as a subroutine. Status: supported.

<span id=”wrf” class=”anchor”></span>

### WRF

The [Weather Research and Forecasting (WRF)
Model](http://www.wrf-model.org/) is a next-generation mesoscale
numerical weather prediction system designed to serve both operational
forecasting and atmospheric research needs. More people are using DART
with WRF than any other model. Note: The actual WRF code is not
distributed with DART. Status: supported.

<span id=”mpas_atm” class=”anchor”></span>

### MPAS ATM

[Model Prediction Across Scales -
atmosphere](https://mpas-dev.github.io/) Status: active

<span id=”ROMS” class=”anchor”></span>

### ROMS

[Regional Ocean Modelling System](https://www.myroms.org/) Status: active

<span id=”CESM” class=”anchor”></span>

### CESM

There are several
[supported versions](http://www.cesm.ucar.edu/models/current.html)
of the Community Earth System Model (CESM) and its ancestors
([CCSM4.0](http://www.cesm.ucar.edu/models/ccsm4.0)). Contact us for
support for unreleased, developmental versions of CESM. Not all are
supported because each requires modification of some subroutines and
setup scripts in order to work with DART. The supported versions depend
to some degree on the CESM component(s) which will be used as the
assimilating model(s). See CAM-FV, POP, and CICE, below, and
[CESM DART guidelines](CESM_DART_guidelines.html). In
general, later versions of CESM can build the latest component models
plus any earlier versions of the component models. For example, CESM2.0
can build CAM-FV version 6, 5, 4, … while CESM1.2.1 can build CAM-FV
5, 4, …, but not 6. Note: the source code for CESM component models is
not distributed with DART.

<span id=”cam-fv” class=”anchor”></span>
<span id=”WACCM” class=”anchor”></span>
<span id=”WACCM-X” class=”anchor”></span>
<span id=”cam-chem” class=”anchor”></span>

### CAM-FV CAM-Chem WACCM WACCM-X

See CESM, above. CAM-FV has been the “work horse” atmospheric climate
model for several generations of CESM releases. The Manhattan release of
DART provides interfaces to CESM1.5 and CESM2.0. The setup scripts for
those CESMs will currently build only the finite volume dynamical core
of CAM. This works for all of the variants of CAM-FV; CAM-Chem, WACCM,
WACCM-X. An interface between DART and the spectral element dy-core of
CAM is available in DART Classic and will be brought into the Manhattan
release when needed.
[(CAM5)](http://www.cesm.ucar.edu/models/cesm1.0/cam); Some SourceMods
and initial file ensembles for older and lower-resolution CAM-FVs are
available in
[DART/CAM datasets](http://www.image.ucar.edu/pub/DART/CAM/) Status: available
for community use.

<span id=”CICE” class=”anchor”></span>

### CICE (pronounced ‘sea ice’)

See CESM, above. The sea-ice component of
[CESM](http://www.cesm.ucar.edu/models/current.html) The interface of
[CESM-CICE](http://www.cesm.ucar.edu/models/cesm1.2/cice/) to DART is
through CESM1.5. Cecilia Bitz and Yongfei Zhang created the
interfaces for DART.  Status: throroughly
beta-tested, full support awaiting the CESM2.0 release.

<span id=”POP” class=”anchor”></span>

### POP

See CESM, above. The Parallel Ocean Program
[(POP)](http://www.cesm.ucar.edu/models/cesm1.0/pop2/) was originally created by
the Los Alamos National Laboratory and has been modified to run in the [NCAR
Community Earth System Model
(CESM)](http://www.cesm.ucar.edu/models/current.html) framework. Additional
modifications are necessary for data assimilation and center around the need to
perform an adjustment upon restart to account for the fact that the input ocean
state has been modified by the assimilation. There are interfaces for CESM1.1.1
and CESM1.2.1. Status: available for community use.

<span id=”CM1” class=”anchor”></span>

### CM1

Cloud Model 1 (CM1) version 18 (CM1r18) is a non-hydrostatic numerical model in
Cartesian 3D coordinates designed for the study of micro- to mesoscale
atmospheric phenomena in idealized to semi-idealized simulations. The CM1 model
was developed and is maintained by George Bryan at the National Center for
Atmospheric Research (NCAR) Mesoscale and Microscale Meteorology Laboratory
(MMM). The model code is freely available from the CM1 website:
<http://www2.mmm.ucar.edu/people/bryan/cm1> and must be downloaded and compiled
outside of DART.
This model interface and scripting support were created by Luke Madaus.

<span id=”fesom” class=”anchor”></span>

### FESOM

<span id=”noah-mp” class=”anchor”></span>

[FESOM](https://fesom.de/models/fesom14) is an unstructured mesh global
ocean model using finite element methods to solve the hydrostatic
primitive equations with the Boussinesq approximation.
The [FESOM model interface](../../models/FESOM/Readme.md),
scripting support and some diagnostic routines were
contributed by Ali Aydoğdu.
Status: available for community use.

### NOAH-MP

<span id=”wrf-hydro” class=”anchor”></span>

### WRF-HYDRO

The WRF-Hydro assimilation support has its own (private) GitHub repository
[NCAR/wrf_hydro_dart](https://github.com/NCAR/wrf_hydro_dart) that supports
the channel-only configuration of WRF-Hydro. Originally, this was almost
entirely the work of James McCreight of NCAR’s Research Applications
Laboratory (RAL). The DAReS team has been working with RAL to incorporate new
features such as localization restricted to watersheds, new inflation algorithms
and variable transformations that provide much better results when assimilating
non-gaussian quantities such as streamflow. The private wrf_hydro_dart repository
is expected to be released in a public version very soon.
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<span id=”models_in_progress” class=”anchor”></span>

## Models that are supported by DART Classic and could be ported to the Manhattan release if needed.

<span id=”GCCOM” class=”anchor”></span>

### General Curvilinear Coastal Ocean Model - GCCOM

GCCOM is a three-dimensional, nonhydrostatic Large Eddy Simulation (LES),
rigid lid model that has the ability to run in a fully three-dimensional
general curvilinear coordinate system. Much of the work of supporting GCCOM in
DART was by Mariangel Garcia while she was at San Diego State University.
One article is
[“Interfacing an ensemble Data Assimilation system with a 3D nonhydrostatic Coastal Ocean Model, an OSSE experiment”](https://ieeexplore.ieee.org/abstract/document/7760992)

<span id=”LMDZ” class=”anchor”></span>

### LMDZ

The DART interfaces were prototyped by Tarkeshwar Singh of the
Centre for Atmospheric Sciences, Indian Institute of Technology (IIT) Delhi.
From the LMDZ homepage:
> LMDZ is a general circulation model (or global climate model) developed
> since the 70s at the “Laboratoire de Météorologie Dynamique”, which
> includes various variants for the Earth and other planets (Mars,
> Titan, Venus, Exoplanets). The ‘Z’ in LMDZ stands for “zoom”
> (and the ‘LMD’ is for  ‘Laboratoire de Météorologie Dynamique”).

<span id=”MITgcm_ocean” class=”anchor”></span>

### MITgcm_ocean

The [MIT ocean GCM](http://mitgcm.org/) version ‘checkpoint59a’ is the
foundation of this implementation. It was modified by Ibrahim Hoteit
(then of Scripps) to accomodate the interfaces needed by DART. Status:
supported, and currently being ported to Manhattan.

<span id=”NAAPS” class=”anchor”></span>

### NAAPS

<span id=”AM2” class=”anchor”></span>

### AM2

The [FMS AM2](http://data1.gfdl.noaa.gov/~arl/pubrel/m/am2/doc/) model
is GFDL’s atmosphere-only code using observed sea surface temperatures,
time-varying radiative forcings (including volcanos) and time-varying
land cover type. This version of AM2 (also called AM2.1) uses the
finite-volume dynamical core (Lin 2004). Robert Pincus (CIRES/NOAA ESRL
PSD1) and Patrick Hoffman (NOAA) wrote the DART interface and are
currently using the system for research. Note: the model code is not
distributed with DART. Status: supported

<span id=”cable” class=”anchor”></span>

### CABLE

The Community Atmosphere Biosphere Land Exchange (CABLE) model is a
land surface model,used to calculate the fluxes of momentum, energy,
water and carbon between the land surface and the atmosphere and to
model the major biogeochemical cycles of the land ecosystem. The DART
interfaces for the standalone version of CABLE have preliminary support
and needs to be updated to be consistent with the Manhattan release.

<span id=”cam-se” class=”anchor”></span>

### CAM-SE

<span id=”CLM” class=”anchor”></span>

### CLM

Assimilation with the [Community Land Model](http://www.cesm.ucar.edu/models/clm/)
is well supported and the system has been used for many research interests, from
biogeochemistry to snow, ice, soil moisture and more. DART/CLM has many research
branches and guidance for which branch is most appropriate is provided upon request.
There is support for CLM under the Lanai release and several development branches
that are consistent with the Manhattan release. The version distributed with the
Manhattan release is not as fully functional as the development branches.
Much of the original DART/CLM support was written by Yongfei Zhang while
she was at the University of Texas at Austin.

<span id=”COAMPS” class=”anchor”></span>

### coamps_nest

The DART interface was originally written and supported by Tim Whitcomb.
The following model description is taken from the [COAMPS overview web
page:](http://www.nrlmry.navy.mil/coamps-web/web/view)

> The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) has
> been developed by the Marine Meteorology Division (MMD) of the Naval
> Research Laboratory (NRL). The atmospheric components of COAMPS,
> described below, are used operationally by the U.S. Navy for
> short-term numerical weather prediction for various regions around the
> world.

Note: the model code is not distributed with DART. Status: supported

<span id=”COSMO” class=”anchor”></span>

### COSMO

<span id=”dynamo” class=”anchor”></span>

### dynamo

A Flux-Transport Dynamo model from Mausumi Dikpati.
The goal of this interface is to estimate the time variation of
velocities to match given spatio-temporal observation of magnetic fields.

<span id=”ikeda” class=”anchor”></span>

### ikeda

The Ikeda model is a 2D chaotic map useful for visualization data
assimilation updating directly in state space. There are three
parameters: a, b, and mu. The state is 2D, x = [X Y]. The equations
are:

~~~
X(i+1) = 1 + mu * ( X(i) * cos( t ) - Y(i) * sin( t ) )
Y(i+1) =     mu * ( X(i) * sin( t ) + Y(i) * cos( t ) ),
~~~

where

~~~
t = a - b / ( X(i)**2 + Y(i)**2 + 1 )
~~~

Note the system is time-discrete already, meaning there is no delta_t.
The system stems from nonlinear optics
(Ikeda 1979, Optics Communications).
Interface written by Greg Lawson. Thanks Greg!

<span id=”jules” class=”anchor”></span>

### JULES

<span id=”mpas_ocean” class=”anchor”></span>

### MPAS Ocean

<span id=”null” class=”anchor”></span>

### null_model

This model provides very simple models for evaluating filtering
algorithms. It can provide simple linear growth around a fixed point, a
random draw from a Gaussian, or combinations of the two.

<span id=”openggcm” class=”anchor”></span>

### OpenGCCM

<span id=”parflow” class=”anchor”></span>

### PARFLOW

<span id=”sqg” class=”anchor”></span>

### SQG

<span id=”tiegcm” class=”anchor”></span>

### TIEGCM

The DART interfaces to the Thermosphere Ionosphere Electrodynamic General
Circulation Model [TIEGCM](http://www.hao.ucar.edu/modeling/tgcm/tie.php)
are fully supported in the Lanai release.
TIEGCM is a community model developed at the NCAR High Altitude Observatory and
is widely used by the space physics and aeronomy community.
DART/TIEGCM has been used to assimilate neutral mass density retrieved from
satellite-borne accelerometers and electon density obtained from ground-based
and space-based GNSS signals. TIEGCM2 is not yet supported, and the existing
interfaces need to be updated to work under the Manhattan release.
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<span id=”orphans” class=”anchor”></span>

## Models that were used a long time ago

<span id=”ECHAM” class=”anchor”></span>

### ECHAM

Status: orphaned.

<span id=”PBL_1d” class=”anchor”></span>

### PBL_1d

The PBL model is a single column version of the WRF model. The
functionality for this has been folded into the regular WRF model_mod
interface so this version is no longer needed. See the WRF model_mod
namelist documentation for how to use the single-column features.
Status: orphaned, obsolete.

<span id=”MITgcm_annulus” class=”anchor”></span>

### MITgcm_annulus

The MITgcm annulus model as configured for this application within DART
is a non-hydrostatic, rigid lid, C-grid, primitive equation model
utilizing a cylindrical coordinate system. For detailed information
about the MITgcm, see http://mitgcm.org Status: orphaned.

<span id=”forced_barot” class=”anchor”></span>

### FORCED_BAROT

Status: orphaned.

<span id=”gitm” class=”anchor”></span>

### GITM

Status: orphaned.

<span id=”pe2lyr” class=”anchor”></span>

### pe2lyr

This model is a 2-layer, isentropic, primitive equation model on a
sphere. Status: orphaned.

<span id=”rose” class=”anchor”></span>

### rose

The rose model is for the stratosphere-mesosphere and was used by Tomoko
Matsuo (now at CU-Boulder) for research in the assimilation of
observations of the Mesosphere Lower-Thermosphere (MLT). Note: the model
code is not distributed with DART. Status: orphaned.

<span id=”datasets” class=”anchor”></span>
<span id=”observation_sets” class=”anchor”></span>
<span id=”verification” class=”anchor”></span>
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# Downloadable datasets for DART.

The code distribution was getting cluttered with datasets, boundary
conditions, intial conditions, … large files that were not necessarily
interesting to all people who downloaded the DART code. This is
compounded by the fact subversion makes a local (hidden) copy of the
original repository contents, so the penalty for being large is doubled.
It just made sense to make all the large files available on as
‘as-needed’ basis.

To keep the size of the DART distribution down we have a separate
www-site to provide some observation sequences, initial conditions, and
general datasets. It is our intent to populate this site with some
‘verification’ results, i.e. assimilations that were known to be ‘good’
and that should be fairly reproducible - appropriate to test the DART
installation.

Please be patient as I make time to populate this directory.
(yes, ‘make’, all my ‘found’ time is taken …)

Observation sequences can be found at
[www.image.ucar.edu/pub/DART/Obs_sets](http://www.image.ucar.edu/pub/DART/Obs_sets)

<span id=”initial_conditions” class=”anchor”></span>
Useful bits for CAM can be found at
[www.image.ucar.edu/pub/DART/CAM](http://www.image.ucar.edu/pub/DART/CAM).

Useful bits for WRF can be found at
[www.image.ucar.edu/pub/DART/WRF](http://www.image.ucar.edu/pub/DART/WRF).

Useful bits for MPAS_ocn can be found at
[www.image.ucar.edu/pub/DART/MPAS_OCN](http://www.image.ucar.edu/pub/DART/MPAS_OCN)

Useful bits for CICE can be found at
[www.image.ucar.edu/pub/DART/CICE](http://www.image.ucar.edu/pub/DART/CICE)

Verification experiments will be posted to
[www.image.ucar.edu/pub/DART/VerificationData](http://www.image.ucar.edu/pub/DART/VerificationData)
as soon as I can
get to it. These experiments will consist of initial conditions files
for testing different high-order models like CAM, WRF, POP … The
low-order models are still distributed with verification data in their
work directories.

<span id=”creating_ics” class=”anchor”></span>

[[top](#)]



# Creating initial conditions for DART

The idea is to generate an ensemble that has sufficient ‘spread’ to
cover the range of possible solutions. Insufficient spread can (and
usually will) lead to poor assimilations. Think ‘filter divergence’.

Generating an ensemble of initial conditions can be done in lots of
ways, only a couple of which will be discussed here. The first is to
generate a single initial condition and let DART perturb it with noise
of a nature you specify to generate as many ensemble members as you
like. The second is to take some existing collection of model states and
convert them to DART initial conditions files and then use the
[NCO operators](http://nco.sourceforge.net/) to set the proper date in the
files. The hard part is then coming up with the original collection of
model state(s).

### Adding noise to a single model state

This method works well for some models, and fails miserably for others.
As it stands, DART supplies a routine that can add gaussian noise to
every element of a state vector. This can cause some models to be
numerically unstable. You can supply your own
model_mod:pert_model_copies() if you want a more sophisticated
perturbation scheme.

### Using a collection of model states.

Simply collect the filenames of all the model netCDF files - one per
ensemble member - and specify them through the input.nml
`&filter_nml:input_state_file_list = "restarts_in.txt"`

Frequently, the initial ensemble of restart files is some climatological
collection. For CAM experiments, we usually start with N different
‘January 1’ states … from N different years. The timestamp in those
files can be ignored through namelist control. Experience has shown that
it takes less than a week of assimilating 4x/day to achieve a steady
ensemble spread. WRF has its own method of generating an initial
ensemble. For that, it is best to go to contact someone familiar with
WRF/DART.

<span id=”low_order_spinup” class=”anchor”></span>

### Initial conditions for the low-order models.

In general, there are ‘restart files’ for the low-order models that
already exist as ASCII sources for netCDF files. These files are usually
called `work/filter_input.cdl` and can be converted to netCDF files by
using the ncgen -o unix command.

You can generate your own ensemble by adding noise to a single
`perfect_input.nc` file and run filter.
The way to specify the input state file is to use the
input_state_file_list mechanism. Simply put the name of the file
into the file referenced by input_state_file_list. In this example,
`filter_input_list.txt`  would contain exactly one line - the string
“perfect_input.nc”. You will also need an observation sequence file,
and you may want to explicitly state the start/stop times.

~~~
&filter_nml


…
input_state_files            = ‘null’,
input_state_file_list        = ‘filter_input_list.txt’
perturb_from_single_instance = .true.
ens_size                     = [whatever you want]
init_time_days               = 0
init_time_seconds            = 0
first_obs_days               = 0
first_obs_seconds            = 0
last_obs_days                = 0
last_obs_seconds             = 0
output_state_files           = ‘null’,
output_state_file_list       = ‘filter_output_list.txt’
…




~~~

In this example, the ensemble will be created with whatever file name
you put in `filter_output_list.txt`.

<span id=”perfect_osse” class=”anchor”></span>
<span id=”osse_simple” class=”anchor”></span>
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# ‘Perfect Model’ or ‘OSSE’ experiments.

Once a model is compatible with the DART facility all of the
functionality of DART is available. This includes ‘perfect model’
experiments (also called Observing System Simulation Experiments -
OSSEs). Essentially, the model is run forward from a known state and, at
predefined times, an observation forward operator is applied to the
model state to harvest synthetic observations. This model trajectory is
known as the ‘true state’. The synthetic observations are then used in
an assimilation experiment. The assimilation performance can then be
evaluated precisely because the true state (of the model) is known.
Since the same forward operator is used to harvest the synthetic
observations as well as during the assimilation, the
‘representativeness’ error of the assimilation system is not an issue.

The example described in this section uses low-order models, but the
logic and procedure is exactly the same for high-order models; the
complication is usually that researchers want more sophisticated
observation networks than those described here. All you have to do is
use the DART tools to create an observation sequence file (even a REAL
observation sequence file), and use that instead of creating one by hand
with create_obs_sequence and create_fixed_network_sequence.
perfect_model_obs will simply ignore the actual observation values
in this case and only use the observation metadata. Take care that the
observation error values in the file are appropriate for an OSSE - the
converters usually assume some sort of representativeness error in the
observation error specification.

There are a set of MATLAB® functions to help explore the assimilation
performance in state-space as well as in observation-space.

<!– TJH FIXME [Exploring the results of a Lorenz ‘96 OSSE](Research/Lorenz96/index.html). –>

## Perfect Model Experiment Overview

There are four fundamental steps to running an OSSE from within DART:


	[Create a blueprint](#obs_blueprint) of what, where, and when you
want observations. Essentially, define the metadata of the
observations without actually specifying the observation values. The
default filename for the blueprint is obs_seq.in. For simple
cases, this is just running
[create_obs_sequence](https://ncar.github.io/DART/api/v0.0.6/program/create_obs_sequence.html)
and
[create_fixed_network_seq](https://ncar.github.io/DART/api/v0.0.6/program/create_fixed_network_seq.html).
You can also use real observation sequences as long as you take care
to specify observation error variances that do not incorporate
representativeness error.


	[Harvest the synthetic observations](#run_pmo) from the true model
state by running
[perfect_model_obs](https://ncar.github.io/DART/api/v0.0.6/program/perfect_model_obs.html)
to advance the model from a known initial condition and apply the
forward observation operator based on the observation ‘blueprint’.
The observation will have noise added to it based on a draw from a
random normal distribution with the variance specified in the
observation blueprint. The noise-free ‘truth’ and the noisy
‘observation’ are recorded in the output observation sequence file.
The entire time-history of the true state of the model is recorded
in `perfect_output.nc`. The default filename for the
‘observations’ is `obs_seq.out`.


	[Assimilate the synthetic observations](#run_filter) with
[filter](https://ncar.github.io/DART/api/v0.0.6/program/filter.html) in
the usual way. The prior/forecast states are preserved in
`preassim.nc` and the posterior/analysis states are preserved in
`filter_output.nc` . The default filename for the file with the
observations and (optionally) the ensemble estimates of the
observations is `obs_seq.final` .


	[Check to make sure the assimilation was effective!](#run_diagnostics)
Ensemble DA is not a black box!
YOU must check to make sure you are making effective use of the
information in the observations!




<span id=”obs_blueprint” class=”anchor”></span>

### 1. Defining the observation metadata - the ‘blueprint’.

There are lots of ways to define an observation sequence that DART can
use as input for a perfect model experiment. If you have observations in
DART format already, you can simply use them. If you have observations
in one of the formats already supported by the DART converters
(check [DART/observations/obs_converters/observations.html](obs_converters_observations.html)),
convert it to a DART observation sequence. You may need to use the
[obs_sequence_tool](https://ncar.github.io/DART/api/v0.0.6/program/obs_sequence_tool.html)
to combine multiple observation sequence files into observation sequence
files for the perfect model experiment. Any existing observation values
and quality control information will be ignored by perfect_model_obs;
only the time and location information are used. In fact, any and all
existing observation and QC values will be removed.

GENERAL COMMENT ABOUT THE INTERPLAY BETWEEN THE MODEL STOP/START
FREQUENCY AND THE IMPACT ON THE OBSERVATION FREQUENCY: There is usually
a very real difference between the dynamical timestep of the model and
when it is safe to stop and restart the model. The assimilation window
is (usually) required to be a multiple of the safe stop/start frequency.
For example, an atmospheric model may have a dynamical timestep of a few
seconds, but may be constrained such that it is only possible to
stop/restart every hour. In this case, the assimilation window is a
multiple of 3600 seconds. Trying to get observations at a finer
timescale is not possible, we only have access to the model state when
the model stops.

If you do not have an input observation sequence, it is simple to create one.


	Run
[create_obs_sequence](https://ncar.github.io/DART/api/v0.0.6/program/create_obs_sequence.html)
to generate the blueprint for the types of observations and
observation error variances for whatever locations are desired.


	Run
[create_fixed_network_seq](https://ncar.github.io/DART/api/v0.0.6/program/create_fixed_network_seq.html)
to define the temporal distribution of the desired observations.




Both create_obs_sequence and create_fixed_network_seq
interactively prompt you for the information they require. This can be
quite tedious if you want a spatially dense set of observations. People
have been known to actually write programs to generate the input to
create_obs_sequence and simply pipe or redirect the information into
the program. There are several examples of these in the
models/bgrid_solo directory: `column_rand.f90,
id_set_def_stdin.f90, ps_id_stdin.f90,` and `ps_rand_local.f90` .
Be advised that some observation types have different input
requirements, so a ‘one size fits all’ program is a waste of time.

NOTE: only the observation kinds in the `input.nml
&obs_kind_nml:assimilate_these_obs_types,evaluate_these_obs`
will be available to the create_obs_sequence program.

DEVELOPERS TIP: You can specify ‘identity’ observations as input to
perfect_model_obs. Identity observations are the model values AT the
exact gridcell location, there is no interpolation at all. Just a
straight table-lookup. This can be useful as you develop your model
interfaces; you can test many of the routines and scripts without having
a working model_interpolate().

More information about creating observation sequence files for OSSE’s is
available in the
[Synthetic Observations section](Observations.md#obs_synthetic).

<span id=”run_pmo” class=”anchor”></span>

### 2. Generating the true state and harvesting the observation values - perfect_model_obs

[perfect_model_obs](https://ncar.github.io/DART/api/v0.0.6/program/perfect_model_obs.html)
reads the blueprint and an initial state and applies the appropriate
forward observation operator for each and every observation in the
current ‘assimilation window’. If necessary, the model is advanced until
the next set of observations is desired. When it has run out of
observations or reached the stop time defined by the namelist control,
the program stops and writes out restarts, diagnostics, observation
sequences, and a log file. This is fundamentally a single deterministic
forecast for ‘as long as it takes’ to harvest all the observations.

<table>
<thead>
<tr class=”header”>
<th>default filename</th>
<th>format</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr class=”odd”>
<td><em>perfect_input.nc</em></td>
<td>netCDF</td>
<td>The DART model state to start from. If the variables have a <code>time</code> dimension, The last timestep will be used as the starting point.</td>
</tr>
<tr class=”even”>
<td><em>perfect_output.nc</em></td>
<td>netCDF</td>
<td>The DART model state at every assimilation timestep. This file has but one ‘copy’ - the truth. Dump the metadata and the time:<br />
<em>ncdump -v time,MemberMetadata perfect_output.nc</em></td>
</tr>
<tr class=”odd”>
<td><em>obs_seq.out</em></td>
<td>ASCII or binary  <br />
DART-specific linked list</td>
<td>This file has the observations - the result of the forward
observation operator. This observation sequence file has two ‘copies’
of the observation: the noisy ‘copy’ and the noise-free ‘copy’.
The noisy copy is designated as the ‘observation’, the noise-free
copy is the truth. The observation-space diagnostic program
<em>obs_diag</em> has special options for using the true copy instead
of the observation copy. See the
<a href=”https://ncar.github.io/DART/api/v0.0.6/program/obs_diag.html”>obs_diag.html</a> for details.</td>
</tr>
<tr class=”even”>
<td><em>dart_log.out</em></td>
<td>ASCII</td>
<td>The run-time output of <em>perfect_model_obs</em> .</td>
</tr>
</tbody>
</table>

Each model may define the assimilation window differently, but
conceptually, all the observations plus or minus half the assimilation
window are considered to be simultaneous and a single model state
provides the basis for all those observations. For example: if the
blueprint requires temperature observations every 30 seconds, the
initial model time is noon (12:00) and the assimilation window is 1
hour; all the observations from 11:30 to 12:30 will use the same state
as input for the forward observation operator. The fact that you have a
blueprint for observations every 30 seconds means a lot of those
observations may have the same value (if they are in the same location).

perfect_model_obs uses the input.nml for its control. A subset of
the namelists and variables of particular interest for
perfect_model_obs are summarized here. Each namelist is fully
described by the corresponding module document.

~~~
&perfect_model_obs_nml



…
read_input_state_from_file  = .true.              # some models can start from preset ICs
single_file_in              = .true               # some models have nested domains …
input_state_files           = ‘perfect_input.nc’  # list of files … for each domain
write_output_state_to_file  = .true.
single_file_out             = .true.
output_state_files          = ‘perfect_output.nc’ # the time-evolution of the true state
async                       = 0                   # totally depends on the model
adv_ens_command             = ‘./advance_ens.csh’ #         depends on the model
obs_seq_in_file_name        = ‘obs_seq.in’
obs_seq_out_file_name       = ‘obs_seq.out’
init_time_days              = -1                  # negative means use the time in …
init_time_seconds           = -1                  # the ‘restart_in_file_name’ file
first_obs_days              = -1                  # negative means start at the first time in …
first_obs_seconds           = -1                  # the ‘obs_seq_in_file_name’ file.
last_obs_days               = -1                  # negative means to stop with the last …
last_obs_seconds            = -1                  # observation in the file.




/





	&obs_sequence_nml
	
write_binary_obs_sequence = .false.       #.false. will create ASCII - easy to check.




/



	&obs_kind_nml
	
…
assimilate_these_obs_types = ‘RADIOSONDE_TEMPERATURE’,
…                                       # list all the synthetic observation
…                                       # types you want




/



	&model_nml
	
…
time_step_days = 0,                       # some models call this ‘assimilation_period_days’
time_step_seconds = 3600                  # some models call this ‘assimilation_period_seconds’


# use what is appropriate for the model







/



	&utilities_nml
	
…
termlevel   = 1                           # your choice
logfilename = ‘dart_log.out’              # your choice




/





~~~

Since perfect_model_obs generally requires advancing the model, and
the model may use MPI or require special ancillary files or forcing
files or …, it is not possible to provide a single example that will
cover all possibilities. The subroutine-callable models (i.e. the
low-order models) can run perfect_model_obs very simply:

> ./perfect_model_obs

<span id=”run_filter” class=”anchor”></span>

### 3. Performing the assimilation experiment - filter

This step is done with the program
[filter](https://ncar.github.io/DART/api/v0.0.6/program/filter.html), which
also uses `input.nml` for input and run-time control. A successful
assimilation will depend on many things: an approprite initial ensemble,
monitoring and perhaps correcting the ensemble spread, localization,
etc. It is simply not possible to design a one-size-fits-all system that
will work for all cases. It is critically important to analyze the
results of the assimilation and explore ways of making the assimilation
more effective.
The [DART tutorial](dart_tutorial.md) and the
[DART_LAB](dart_lab.md) exercises
are an invaluable resource to learn and understand how to determine the
effectiveness of, and improve upon, an assimilation experiment. The
concepts learned with the low-order models are directly applicable to
the most complicated models.

It is important to remember that if *filter* ‘terminates normally’, it
does not necessarily mean the assimilation was effective!

The Manhattan release of DART allows for a very high degree of
customization when it comes to output. To stay focused on the concepts,
I will restrict the examples to models that have
`single_file_in=.true.`, `single_file_out=.true.`, and
`stages_to_write='preassim','output'`.

filter generally produces at least two state-space output diagnostic
files (`preassim.nc` and `filter_output.nc`) which contains values of
the ensemble mean, ensemble spread, perhaps the inflation values, and
(optionally) ensemble members for the duration of the experiment.
filter also creates an observation sequence file that contains the
input observation information as well as the prior and posterior
ensemble mean estimates of that observation, the prior and posterior
ensemble spread for that observation, and (optionally), the actual prior
and posterior ensemble estimates of that observation. Rather than
replicate the observation metadata for each of these, the single
metadata is shared for all these ‘copies’ of the observation. See
[An overview of the observation sequence](Observations.md#obs_seq_overview)
for more detail.
filter also produces a run-time log file that can greatly aid in
determining what went wrong if the program terminates abnormally.

A very short description of some of the most important namelist
variables is presented here. Basically, I am only discussing the
settings necessary to get filter to run. I can guarantee these
settings WILL NOT generate the BEST assimilation. Again, see the module
documentation for a full description of each namelist.

~~~
&filter_nml  <— link to the full namelist description!



async                        = 0
ens_size                     = 40                 # something ≥ 20, please
num_output_state_members     = 40                 # of FULL DART model states to put in state-space output files
num_output_obs_members       = 40                 # of ensemble member estimates of observation to save
obs_sequence_in_name         = ‘obs_seq.out’      # output from perfect_model_obs
obs_sequence_out_name        = ‘obs_seq.final’
init_time_days               = -1                 # the time in the restart file is correct
init_time_seconds            = -1
first_obs_days               = -1                 # same interpretation as with perfect_model_obs
first_obs_seconds            = -1
last_obs_days                = -1                 # same interpretation as with perfect_model_obs
last_obs_seconds             = -1

single_file_in               = .true.
input_state_file_list        = ‘filter_input_list.txt’   file containing the list of input files - 1 per domain
stages_to_write              = ‘preassim’, ‘output’
single_file_out              = .true.
output_state_file_list       = ‘filter_output_list.txt’  file containing the list of (desired) output files - 1 per domain
write_all_stages_at_end      = .false.

inf_flavor               = 0,                       0    0 is ‘do not inflate’
…




/





	&quality_control_nml
	
	input_qc_threshold       =  3.0,
	outlier_threshold       =  3.0               # Observation rejection criterion!





/



	&assim_tools_nml
	
filter_kind             = 1             1 is EAKF, 2 is EnKF …
cutoff                  = 0.2           this is your localization - units depend on type of ‘location_mod’




/



	&obs_kind_nml
	
assimilate_these_obs_types = ‘RAW_STATE_VARIABLE’    Again, use a list … appropriate for your model




/



	&model_nml
	
assimilation_perior_days    = 0                      the assimilation interval is up to you
assimilation_perior_seconds = 3600




/





~~~

Once the namelist is set, execute filter to integrate the ensemble
forward with the final ensemble state written to the files in
`filter_output_list.txt`. For the low-order models and bgrid_solo
(i.e. the models that can be run with single_file_in = .true. and
`single_file_out = .true.`) the default filenames will be
`preassim.nc` and `filter_output.nc` and will contain values
for 40 ensemble members once a day.

~~~
mpirun ./filter        -OR-

mpirun.lsf ./filter    -OR-

./filter               -OR-

however YOU run filter on your system!
~~~

<span id=”run_diagnostics” class=”anchor”></span>

### 4. ASSESS THE PERFORMANCE!

All the concepts of spread, rmse, rank histograms that were taught in
the DART tutorial and in DART_LAB should be applied now. Try the
techniques described in the
[Did my experiment work?](Diagnostics.md#DidItWork) section.
The ‘big three’ state-space diagnostics are repeated here because
they are so important.
The first two require the `perfect_output.nc`.


| |

— | — |

plot_bins.m | plots the rank histograms for a set of state variables. This requires you to have all or most of the ensemble members available in the `preassim.nc` or `filter_output.nc` files. |

plot_total_err.m | plots the evolution of the error (un-normalized) and ensemble spread of all state variables. |

plot_ens_mean_time_series.m | plots the evolution of a set of state variables - just the ensemble mean (and Truth, if available). plot_ens_time_series.m is actually a better choice if you can afford to write all/most of the ensemble members to the `preassim.nc` and `filter_output.nc` files. |



### DON’T FORGET ABOUT THE OBSERVATION-SPACE DIAGNOSTICS!

<span id=”adding_a_model” class=”anchor”></span>
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# Adding a model to DART - Overview

<!– this is the start of the content from Getting_Started –>

<span id=”own_model_requirements” class=”anchor”></span> [](#own_model_requirements)

## Requirements: if you have your own model

[If you want to run your own model](Models.md#adding_a_model),
all you need is an executable and some scripts to interface with DART - we have
templates and examples. If your model can be called as a subroutine, life is good,
and the hardest part is usually a routine to pack the model
state vector into one whopping array - and back. Again - we have
templates, examples, and a [../../models/README.md](models/README.md)
describing the required interfaces.

Starting with the Jamaica release, there is an option to compile with
the MPI (Message Passing Interface) libraries in order to run the
assimilation step in parallel on hardware with multiple CPUs. Note that
this is optional; MPI is not required. If you do want to run in
parallel, then we also require a working MPI library and appropriate
cluster or SMP hardware. See the
[MPI intro](dart_mpi.html)
for more information on running with the MPI option.

One of the beauties of ensemble data assimilation is that even if
(particularly if) your model is single-threaded, you can still run
efficiently on parallel machines by dealing out each ensemble member (a
unique instance of the model) to a separate processor. If your model
cannot run single-threaded, fear not, DART can do that too, and simply
runs each ensemble member one after another using all the processors for
each instance of the model.

<!– this is the end of the content from Getting_Started –>

DART is designed to work with many models without modifications to the
DART routines or the model source code. DART can ‘wrap around’ your
model in two ways. One can be used if your model can be called as a
subroutine, the other is for models that are separate executables.
Either way, there are some steps that are common to both paths.

Please be aware that several of the high-order models (CAM and WRF, in
particular) have been used for years and their scripts have incorporated
failsafe procedures and restart capabilities that have proven to be
useful but make the scripts complex - more complex than need be for the
initial attempts. Truly, some of the complexity is no longer required
for available platforms. Then again, we’re not running one instance of a
highly complicated computer model, we’re running N of them.

NEW The DART Manhattan release provides native netCDF read/write
support. Consequently, there is no need for translation routines that we
have traditionally been calling model_to_dart or dart_to_model.
If, however, your model does not use netCDF for I/O, these programs must
be written. We have a lot of experience writing these converters - you
should not be afraid to ask for advice or for code to start from.

NEW Manhattan provides a program to help test the required interfaces:
[assimilation_code/programs/model_mod_check/model_mod_check.f90](https://ncar.github.io/DART/api/v0.0.6/program/model_mod_check.html).
Many models start with this and modify it to suit their needs. Be aware
that some of the model-specific model_mod_check.f90 programs use
deprecated features. Focus on the ones for Manhattan-compliant
models.

## The basic steps to include your model in DART - each of these topics has its own section farther down.


	Copy the models/template directory and files to your own DART
model directory.


	Modify the model_mod.f90 file to return specifics about your
model. This module MUST contain all the required interfaces (no
surprise) but it can also contain more interfaces as is convenient.
The required interfaces calling syntax (argument list) should not be
modified in any way.


	If your model cannot be called as a subroutine: Modify
shell_scripts/advance_model.csh to collect all the input files
needed to advance the model into a clean, temporary directory,
convert the state vector file into input to your model, run your
model, and convert your model output to the expected format for
another assimilation by DART. DART will write out a control file
that contains some information that must be passed to
advance_model.csh: for example, the number of ensemble members,
the input and output filenames for each ensemble member, etc.
1.  Prepare a directory (or multiple directories) with the contents


needed to advance your model.





	Modify the input to your model communicating the run-time
settings necessary to integrate your model from one time to
another arbitrary time in the future.


	Convert (if necessary) your input file to netCDF.


	Run the model (you may need to watch the MPI syntax)


	Convert (if necessary) the model output to a netCDF file DART
can use for the next assimilation.






	If a single instance of your model needs to advance using all the
MPI tasks, there is one more script that needs to work -
shell_scripts/run_filter.csh. This script must do quite a lot.
Find some examples in the models/*/shell_scripts directories.


	[optional step] Modify the MATLAB® routines to know about the
specifics of the netCDF files produces by your model (sensible
defaults, for the most part.)


	Test. Generally, it is a good strategy to use DART to create a
synthetic observation sequence with ONE observation location - and
ONE observation type - for several assimilation periods. With
that, it is possible to run perfect_model_obs and then filter
without having to debug too much stuff at once. A separate document
will address how to test your model with DART.




## Programming style

#1 Don’t shoot the messenger. We have a lot of experience trying to
write portable/reproducible code and offer these suggestions. All of
these suggestions are for the standalone DART components. We are not
asking you to rewrite your model. If your model is a separate
executable, leaving it untouched is fine. Writing portable code for
the DART components will allow us to include your model in the nightly
builds and reduces the risk of us making changes that adversely affect
the integration with your model. There are some routines that have to
play with the core DART routines, these are the ones we are asking you
to write using these few simple guidelines.



	Use explicit typing, do not use or rely on the ‘autopromote’ flag on
your compiler.


	Use the intent() attribute.


	Use the use, xxx_mod, only : bob, sally statements for routines
from other modules. This really helps us track down things and
ensures you’re using what you think you’re using.


	Use Fortran namelists for I/O if possible.


	Check out the existing parameters/routines in
assimilation_code/modules/utilities/types_mod.f90,
assimilation_code/modules/utilities/utilities_mod.f90, and
assimilation_code/modules/utilities/time_manager_mod.f90. You
are free to use these and are encouraged to do so. No point
reinventing the wheel and these routines have been tested
extensively.







Hopefully, you have no idea how difficult it is to build each model with
‘unique’ compile options on N different platforms. Fortran90 provides a
nice mechanism to specify the type of variable, please do not use
vendor-specific extensions. (To globally autopromote 32bit reals to
64bit reals, for example. That is a horrible thing to do, since vendors
are not consistent about what happens to explicitly-typed variables.
Trust me. They lie. It also defeats the generic procedure interfaces
that are designed to use a single interface as a front-end to multiple
‘type-specific’ routines.) Compilers do abide by the standard, however,
so DART code looks like:


	~~~
	character(len=8)      :: crdate
integer, dimension(8) :: values
…
real(r4) :: a,b
real(r8) :: bob
integer  :: istatus, itype
…
real(r8),            intent(in)  :: x(:)
type(location_type), intent(in)  :: location
integer,             intent(in)  :: itype
integer,             intent(out) :: istatus
real(r8),            intent(out) :: obs_val





~~~

depending on the use. The r4 and r8 types are explicitly defined in
assimilation_code/modules/utilities/types_mod.f90 to accurately
represent what we have come to expect from 32bit and 64bit floating
point real variables, respectively. If you like, you can redefine r8
to be the same as r4 to shrink your memory requirement. The people who
run with WRF frequently do this. Do not redefine the digits12
parameter, that one must provide 64bit precision, and is used in
precious few places.



<span id=”addingAmodelSpecific” class=”anchor”></span>

## Adding a model to DART - Specifics

If your model is a separate executable, it would be wise to look at the
heavily commented template script
[models/template/shell_scripts/advance_model.csh](https://github.com/ncar/dart/models/template/shell_scripts/advance_model.csh)
and then a few higher-order models to see how they do it.
Become familiar with [DART’s use of MPI](dart_mpi.html), the
[options for parallelism](filter_async_modes.html), and
the filter namelist parameter
[async](https://ncar.github.io/DART/api/v0.0.6/program/filter.html).

<span id=”Copying” class=”anchor”></span>

### 1. Copying the template directory

A little explanation/motivation is warranted. If the model uses the
standard layout, it is much easier to include the model in the nightly
builds and testing. For this reason alone, please try to use the
recommended directory layout. Simply looking at the DART/models
directory should give you a pretty good idea of how things should be
laid out. Copy the template directory and its contents.
The point of copying this directory is to get a `model_mod.f90` that works
as-is and you can modify/debug the routines one at a time.

The destination directory (your model directory) should be in the
DART/models directory to keep life simple. Moving them around will
cause problems for the `work/mkmf_xxxxx` configuration files. Each
model directory should have a work and shell_scripts directories,
and may have a matlab directory, a src directory, or anything else
you may find convenient.

Now, you must change all the `work/path_names_xxxxx` file contents to
reflect the location of your `model_mod.f90`.

<span id=”model_mod” class=”anchor”></span>

### 2. model_mod.f90

We have templates, examples, and a document describing the required
interfaces in the DART code tree -
[DART/models/template/model_mod.html](Manhattan/models/template/model_mod.html).
Every(?) user-visible DART program/module is intended to have a matching
piece of documentation that is distributed along with the code. The DART
code tree always has the most current documentation.

Check out time_manager_mod.f90 and utilities_mod.f90 for
general-purpose routines …

Use Fortran namelists for I/O if possible.

Modify the model_mod.f90 file to return specifics about your model.
This module MUST contain all the required interfaces (no surprise) but
it can also contain many more interfaces as is convenient. This module
should be written with the understanding that print statements and error
terminations will be executed by multiple processors/tasks. To restrict
print statements to be written once (by the master task), it is
necessary to preface the print as in this example:
~~~
if (do_output()) write(,)’model_mod:namelist cal_NML’,startDate_1,startDate_2
~~~

<span id=”requiredinterfaces” class=”anchor”></span>

#### Required Interfaces in model_mod.f90

No matter the complexity of the model, the DART software requires a few
interface routines in a model-specific Fortran90 module model_mod.f90
file. The models/template/model_mod.f90 file has extended comment
blocks at the heads of each of these routines that go into much more
detail for what is to be provided. You cannot change the types or
number of required arguments to any of the required interface
routines. You can add optional arguments, but you cannot go back
throught the DART tree to change the gazillion calls to the mandatory
routines. It is absolutely appropriate to look at existing models to get
ideas about how to implement the interfaces. Finding a model
implementation that is functionally close to yours always helps.

The table of the mandatory interfaces and expected programming
degree-of-difficulty
is:


subroutine callable | separate executable | routine | description |

——————- | ——————- | ——- | ———– |

easy | easy | [get_model_size](Manhattan/models/template/model_mod.html#get_model_size) | This function returns the size of all the model variables (prognostic or diagnosed or …) that are packed into the 1D DART state vector. That is, it returns the length of the DART state vector as a single scalar integer. |

depends | trivial | [adv_1step](Manhattan/models/template/model_mod.html#adv_1step) | For subroutine-callable models, this routine is the one to actually advance the model 1 timestep (see models/bgrid_solo/model_mod.f90 for an example). For non-subroutine-callable models, this is a NULL interface. Easy. |

depends | depends | [get_state_meta_data](Manhattan/models/template/model_mod.html#get_state_meta_data) | This routine takes as input an integer into the DART state vector and returns the associated location and (optionally) variable type from obs_kind/obs_kind_mod.f90. (See models/*/model_mod.f90 for examples.) Since DART uses netCDF and is responsible for the storage order, this is generally pretty easy. |

easy | easy | [shortest_time_between_assimilations](Manhattan/models/template/model_mod.html#shortest_time_between_assimilations) | This routine returns the smallest increment in time (in seconds) that the model is capable of advancing the state in a given implementation. For example, the dynamical timestep of a model is 20 minutes, but there are reasons you don’t want to (or cannot) restart at this interval and would like to restart AT MOST every 6 hours. For this case, shortest_time_between_assimilations should return 21600, i.e. 6*60*60. This is also interpreted as the nominal assimilation period. This interface is required for all applications. |

easy | easy | [end_model](Manhattan/models/template/model_mod.html#end_model) | Performs any shutdown and cleanup needed. Good form would dictate that you should deallocate any storage allocated when you instantiated the model (from static_init_model, for example). |

depends | depends | [static_init_model](Manhattan/models/template/model_mod.html#static_init_model) | Called to do one-time initialization of the model. This generally includes setting the grid information, calendar, etc. |

trivial | trivial | [init_time](Manhattan/models/template/model_mod.html#init_time) | Returns a time that is somehow appropriate for starting up a long integration of the model IFF the &perfect_model_obs_nml namelist parameter read_input_state_from_file = .false. If this option is not to be used in perfect_model_obs, this can be a routine that simply throws a fatal error. |

easy | easy | [init_conditions](Manhattan/models/template/model_mod.html#init_conditions) | Companion interface to init_time. Returns a model state vector that is somehow appropriate for starting up a long integration of the model. Only needed IFF the &perfect_model_obs_nml namelist parameter read_input_state_from_file = .false. |

trivial - difficult | trivial - difficult | [nc_write_model_atts](Manhattan/models/template/model_mod.html#nc_write_model_atts) | This routine is used to write the model-specific attributes to netCDF files created by DART. If you are simply updating existing (template) netCDF files, this routine is very easy. The subroutine in the models/template/model_mod.f90 WILL WORK for new models but does not know anything about prognostic variables or geometry or … Still, it is enough to get started without doing anything. More meaningful coordinate variables etc. are needed to supplant the default template. This can be as complicated as you like - see existing models for examples. |

trivial - medium | trivial - medium | [nc_write_model_vars](Manhattan/models/template/model_mod.html#nc_write_model_vars) | This routine is currently unused but anticipated for future enhancements. The default routine in default_model_mod should be referenced. |

trivial | trivial | [get_close_obs](Manhattan/models/template/model_mod.html#get_close_obs) | This is the routine that takes a single observation location and a list of other observation locations, returns the indices of all observation locations close to the single observation along with the number and the distances for the close ones. This is generally a ‘pass-through’ routine to a routine of the same name in the location module. |

trivial | trivial | [get_close_state](Manhattan/models/template/model_mod.html#get_close_state) | This is the routine that takes a single observation location and a list of state locations, returns the indices of all the state locations close to the observation as well as the number and the distances for the close ones. This is generally a ‘pass-through’ routine to a routine of the same name in the location module. |

depends | hard | [model_interpolate](Manhattan/models/template/model_mod.html#model_interpolate) | This is one of the more difficult routines. Given a DART state vector, a location, and a desired generic ‘quantity’ (like QTY_SURFACE_PRESSURE, QTY_TEMPERATURE, QTY_SPECIFIC_HUMIDITY, QTY_PRESSURE, … ); return the desired scalar quantity and set the return status accordingly. This is what enables the model to use observation-specific ‘forward operators’ that are part of the common DART code. |

depends | trivial - difficult | [convert_vertical_obs](Manhattan/models/template/model_mod.html#convert_vertical_obs) | If needed, the difficulty lies in the complexity of the model vertical coordinate system. |

depends | trivial - difficult | [convert_vertical_state](Manhattan/models/template/model_mod.html#convert_vertical_state) | If needed, the difficulty lies in the complexity of the model vertical coordinate system. |

depends | trivial - difficult | [pert_model_copies](Manhattan/models/template/model_mod.html#pert_model_copies) | This routine is used to generate initial ensembles. This may be a NULL interface if you can tolerate the default perturbation strategy of adding noise to every state element or if you generate your own ensembles outside the DART framework. There are other ways of generating ensembles … climatological distributions, bred singular vectors, voodoo … |

easy | easy | [read_model_time](Manhattan/models/template/model_mod.html#read_model_time) | This routine simply stores a copy of the ensemble mean of the state vector within the model_mod. The ensemble mean may be needed for some calculations (like converting model sigma levels to the units of the observation - pressure levels, for example). |

easy | easy | [write_model_time](Manhattan/models/template/model_mod.html#read_model_time) | This routine simply stores a copy of the ensemble mean of the state vector within the model_mod. The ensemble mean may be needed for some calculations (like converting model sigma levels to the units of the observation - pressure levels, for example). |



### If your model is subroutine-callable - you’re done!

<span id=”add_a_simple_model” class=”anchor”></span>

## Adding support for a “simple” model

### overview

each routine includes usual things it often has to do for subroutine-callable
models which can manufacture an initial condition state vector.
[model_mod_check.f90](https://ncar.github.io/DART/api/v0.0.6/program/model_mod_check.html)
can be used to test these routines individually before you run it with filter.
start with all defaults from other modules and add, in order the following
routines:


	init_time()




2. init_conditions()
for a “cold start” fill in an empty state vector with initial conditions and set the initial time. if the state vector is all 0s and the time is 0, you can use the default routines.

3. get_model_size()
return number of items in the state vector

if you have only a single type of variable in your state vector, use the next two:

4. static_init_model()
often your model_size is set by namelist. allocate an array of that size and precompute all the locations for each state vector item. call add_domain() with the model size so dart knows how long the state vector is.

5. get_state_meta_data()
return QTY_STATE_VARIABLE as the quantity if present, and return the location for that index by looking it up in a location array.

if you have more than a single type of variable in the state vector:

4. static_init_model()
read namelist to see how many fields are going to be read in for the state
vector. use add_domain() to indicate which netcdf vars should be read. read in
any auxiliary data needed by interpolation code (eg. topology). read template
file to set grid locations. use get_domain_size() to compute model_size.

5. get_state_meta_data()
call get_model_variable_indices() and get_state_kind() to figure
out the i,j,k indices and which variable this offset is. use the i,j,k
to compute the grid location and return it along with the quantity.

now continue

6. end_model()
deallocate any arrays allocated in static_init_model()

at this point you can assimilate identity obs at the model time

7. adv_1step()
if possible, embed the code that computes x(t+1) = F(x(t)). or call a
separate subroutine to advance the model state from one time to another.

8. shortest_time_between_assimilations()
return a namelist or a fixed value for the minimum model advance time.

at this point you can assimilate a time series of identity obs

9. model_interpolate()
where the bulk of the work often is. this routine gets passed the location and quantity of the observation. find the indices which enclose that location and interpolate to get an array of expected values.

at this point you can assimilate obs at locations other than state vector points.

10. nc_write_model_atts()
add attributes to the output diagnostic files.

anything below here generally can use the default routines in other modules:


	read_model_time()




12. write_model_time()
generally can use the system defaults, unless you have a model restart file that already stores time in a particular format.

13. pert_model_copies()
the default is to add gaussian noise to the entire model state. if you
want to only perturb a single variable, or perturb it with different
noise ranges you can add code here. used to generate an ensemble from a
single model state for filter.


	convert_vertical_obs()




15. convert_vertical_state()
unused in models without vertical coordinate choices


	get_close_obs()




17. get_close_state()
often unused unless you want to modify the localization behavior

18. nc_write_model_vars()
not currently called, leave it using the default routine. here for
possible future implementation.

<span id=”add_a_complex_model” class=”anchor”></span>

## Adding support for a “complex” model

### overview

Each routine includes usual things it often has to do for a large
geophysical model. this is different from the low order models.
[model_mod_check.f90](https://ncar.github.io/DART/api/v0.0.6/program/model_mod_check.html)
can be used to test these routines individually before you run it with
filter. start with all defaults from other modules and add, in order
the following routines:

1. static_init_model()
read namelist to see how many fields are going to be read in for the
state vector. use add_domain() to indicate which netcdf vars should be
read. read in any auxiliary data needed by interpolation code (eg.
topology). read template file to set grid locations. use
get_domain_size() to compute model_size.

2. end_model()
deallocate any arrays allocated in static_init_model()

3. get_model_size()
return model_size computed in static_init_model()

4. shortest_time_between_assimilations()
return a namelist or a fixed value for the minimum model advance time.


	read_model_time()




6. write_model_time()
if the time is stored in the netcdf files, supply routines that can read
and write it in the correct format. we have default routines that work
if it matches what those routines expect: a time variable with an
optional calendar variable. if none, it’s fractional days. if the time
variable is an array, read/write the last one.

7. get_state_meta_data()
call get_model_variable_indices() and get_state_kind() to figure
out the i,j,k indices and which variable this offset is. use the i,j,k
to compute the grid location and return it along with the quantity.

now you can assim identity obs

8. model_interpolate()
where the bulk of the work will be. get the location and quantity of the
observation. find the i,j,k indices which enclose that location, or
search for the cell number. can compute i,j in a regular lat/lon grid,
have to search in a deformed grid. if multiple vertical options,
different ensemble members may result in more than a single level. use
get_state() to get the ensemble-sized array of values for each offset
into the state vector, and do interpolation to get an array of expected
values.

other obs

9. nc_write_model_atts()
can leave for later. eventually add grid info to the diag files for
plotting.


	convert_vertical_obs()




11. convert_vertical_state()
if this model has a choice of multiple vertical coordinates (e.g.
pressure, height, etc) add code here to convert between the possible
verticals.


	get_close_obs()




13. get_close_state()
if you want to change the impact based on something other than the type
or kind, put code here. should test for vertical and do the conversion
on demand if it hasn’t already been done.

14. pert_model_copies()
the default is to add gaussian noise to the entire model state. if you
want to only perturb a single variable, or perturb it with different
noise ranges you can add code here. used to generate an ensemble from a
single model state for filter.


	init_time()


	init_conditions()




17. adv_1step()
generally not used in large geophysical models, but if you can generate
a single model state without reading in a file, supply code in
init_conditions. if you can advance the model via a subroutine, add the
code to adv_1step.

18. nc_write_model_vars()
not currently called, leave it using the default routine. here for
possible future implementation.

<span id=”cycling_a_model” class=”anchor”></span>

## Cycling Models

### Overview

For simple models which can be advanced by a subroutine call, the
filter program is driven by the input observation sequence. It
assimilates all observations in the current assimilation window and then
advances the model state until the window includes the next available
observation. When it runs out of observations, filter exits.

For complex models which are themselves an MPI program or have
complicated scripting to run the model here are some simplified
considerations for scripting an experiment. A “cycling script” would
need to:


	[if needed] Run the ensemble of models forward to the time of the
first observation.


	The input observation sequence file should be created (or trimmed)
to only include observations in the current window.


	Run filter to assimilate all observations in the current window.


	Save a copy of the output files and diagnostic files. Often a
timestamp is used as part of the filename or subdirectory name to
make it unique.


	Run the ensemble of models forward in time.


	Run filter again.


	Repeat until all observations have been assimilated.




### In More Detail

The filter program requires an ensemble of model output files in
NetCDF file format as input. If the model does not use NetCDF a
translation step from the model native format to NetCDF is needed. The
files are often named with the ensemble number as part of the name and
also with a timestamp as part of the filename or part of a subdirectory
name which contains all the files for that timestep. Symbolic links can
be used to link a common simpler name to a file with a timestamp in the
filename or directory name.

The filter program also requires an input observation sequence file.
Often these are named with a timestamp to indicate the central time of
the observations, e.g. obs_seq.2010-10-04.00:00:00 and then a common
name (e.g. obs_seq.out) is used with a symbolic link to indicate the
right file for input.

If adaptive inflation is being used the filter program also requires
inflation input files. Again, timestamps in the names with a common
symbolic link name are often used here.

The filter program runs.

The output of the filter program include updated model files using one
of three different workflows:


	
	The filter program directly overwrites the input files.
	
	Advantages: uses the least amount of disk usage and minimizes
file copying.


	Disadvantages: if something crashes the files can be left in an
indeterminate state making restarting more complicated.










	The script copies the input files to the output names, and the
filter program updates the existing files.



	Advantages: The filter program can easily be restarted in case
of problems because the original input files are unchanged. The
output files are immediately available to be used as input to
the model.


	Disadvantages: uses more disk space.









	
	The filter program creates new output files from scratch.
	
	Advantages: The output files are smaller since they only contain
the state vector and no other grid or auxiliary information. The
filter program can easily be restarted in case of problems.


	Disadvantages: generally requires a post-processing step to
insert the updated state information into full model restart
files.












The script should also save the obs_seq.final diagnostic file,
possibly with a timestamp in the filename or subdirectory name, and the
updated inflation files in the case where adaptive inflation is used.

The script can run the ensemble of models forward in time in many ways.
A few of the ways we’re aware of are:


	If a queuing system is available, the ensemble of models can be
submitted either as independent jobs or using the batch system’s job
array syntax. They run as soon as resources are available. The
disadvantage is it can be complicated to know when all the jobs have
finished successfully.


	On smaller clusters the ensemble members can be advanced one after
the other in a loop. There is no question about when the last member
has been advanced and it requires no more resources than running a
single copy of the model. The disadvantage is this is the slowest
wall-clock way to advance the ensemble.
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### 3. advance_model.csh

### The Big Picture for models advanced as separate executables.

The normal sequence of events is that DART reads in its own restart file
(do not worry about where this comes from right now) and eventually
determines it needs to advance the model. DART needs to be able to take
its internal representation of each model state vector, the valid time
of that state, and the amount of time to advance the state - and
communicate that to the model. When the model has advanced the state to
the requested time, the output must be ingested by DART and the cycle
begins again. DART is entirely responsible for reading the observations
and there are several programs for creating and manipulating the
observation sequence files.

There are a couple of ways to exploit parallel architectures with DART,
and these have an immediate bearing on the design of the script(s) that
control how the model instances (each model copy) are advanced.
Perhaps the conceptually simplest method is when each model instance is
advanced by a single processor element. DART calls this async = 2. It
is generally efficient to relate the ensemble size to the number of
processors being used.

The alternative is to advance every model instance one after another
using all available processors for each instance of the model. DART
calls this async = 4, and requires an additional script. For
portability reasons, DART uses the same processor set for both the
assimilation and the model advances. For example, if you advance the
model with 96 processors, all 96 processors will be employed to
assimilate. If your model requires 2000 processors, all 2000 will be
employed for the assimilation. Some people exploit the queueing systems
on their large machines to allow for the explicit customization of how
many tasks are used for each model advance and for an assimilation.

advance_model.csh is invoked in one of two ways: 1) if async = 2
then filter uses a system() call, or 2) if async = 4 then
run_filter.csh makes the call. Either way there are three arguments.


	the process number of the caller - could be the master task ID
(zero) or (especially if async = 2) a process id that gets related
to the copy. When multiple copies are being advanced simultaneously,
each of the advances happens in its own run-time directory.


	the number of state copies belonging to that process


	the name of the (ASCII) filter_control_file for that process. The
filter_control file contains the following information (one per
line): the ensemble member, the name of the input file (containing
the DART state vector), and the name of the output file from the
model containing the new DART state vector. For example,

<div class=”routine”>
1
assim_model_state_ic.0001
assim_model_state_ud.0001
2
assim_model_state_ic.0002
assim_model_state_ud.0002
…
</div>





#### async = 2 … advancing many copies at the same time

Modify shell_scripts/advance_model.csh to:


	Collect all the input files needed to advance the model into a
clean, temporary directory.


	Create a routine or set of routines to modify the input to your
model communicating the run-time settings necessary to integrate
your model from one time to another arbitrary time in the future.
These routines are called in the advance_model.csh script. Every
model is controlled differently, so writing detailed descriptions
here is pointless.


	Determine how many tasks you have, and how many ensemble members you
have. Determine how many ‘batches’ of ensemble members must be done
to advance all of them. With 20 tasks and 80 ensemble members, you
will need to loop 4 times, (for example) clean the temporary directory,
and


	Loop over the following steps - each loop advances one ensemble
member:
1.  If necessary, convert the DART (posterior) file into input for


your model, After DART has assimilated the observations and
created new (posterior) states, it may be necessary to
post-process these states to impose model-specific limitations.
There is nothing in the ensemble filter methodology that
restricts posteriors to be physically meaningful (soil moistures
could be slightly negative, for example), or that related
quantities in the state have been conserved. Since each model
handles these situations differently, it is up to the user to
write any post-processing routines that may be necessary to
check for viable input to the model. Frequently this is done by
a program called dart_to_model.f90. If you need to do this,
you will also need to create/modify a mkmf_dart_to_model
and path_names_dart_to_model specific to your model.





	run your model, and


	if necessary, convert your model output (the prior) to netCDF or
simply rename or link to the appropriate filename for another
assimilation by DART.








During this initial phase, it may be useful to _leave_ the temporary
directory intact until you verify everything is as it should be.

#### async = 4 … advancing each copy one at a time

In addition to modifying shell_scripts/advance_model.csh as
described above, you must also modify shell_scripts/run_filter.csh
in the following way: THIS PART NEEDS TO BE FILLED IN

<span id=”testing_strategies” class=”anchor”></span>

### 4. Testing Strategies - under construction

Generally testing when you add a new model to DART includes:
Checking the converter programs.
Checking the model advance control.
Starting with one observation in a known location, with a known value
and error specification.
Performing a ‘perfect model’ experiment for a few timesteps.
Looking at what the assimilation did with:

> work % ncdiff filter_output.nc preassim.nc Innov.nc
> work % ncview Innov.nc

<span id=”model_matlab_support” class=”anchor”></span>

### 5. Adding MATLAB® support for your own model - under construction.

Only needed for state-space diagnostics.
Define a structure with required elements.
Examples exist in the diagnostics/matlab/private directory.

<span id=”examples” class=”anchor”></span>



## Examples - under construction


	observation location/value plots


	[a brief explanation of ‘localization’](https://ncar.github.io/DART/api/v0.0.6/module/assim_tools_mod.html)


	namelist settings for damped adaptive spatially-varying group filter
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## Namelists

Many DART programs have namelists to specify run-time control. Some
programs use one or more modules - each module may have its own
namelist. As a consequence, we find it convenient to have one file
(called `input.nml`) specifying all the namelists.

An example namelist for each program is automatically built when the
makefile is generated by mkmf_xxxxx. The example namelist is named
`input.nml.xxxxx_default` where xxxxx is the name of the program. The
example namelists have default values, which may not be appropriate for
your use. The default `input.nml` in each work directory generally has
better values. As usual, the documentation for each module is the best
place to get information about the namelist settings.

[[top](#)]
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# DART Observation support and processing

## Links to major sections of this document:
- [An overview of the DART ‘preprocess’ program](#preprocess)
- [An overview of the observation sequence](#obs_seq_overview)



	
	[Creating observations and sequences](#obs_creation)
	
	[synthetic observations](#obs_seq_osse)


	[real observations](#obs_real)
















	[Working with observation sequences](#obs_seq_manip)


	[The difference between observation TYPE and QUANTITY](#adding_types)




~~The DART distribution includes a full set of documentation. Once you
download DART, you may view the documentation offline by opening the
index.html file in the top-level DART directory. If you want to
explore the documentation page without downloading DART, you may
[view the documentation for the Manhattan release](Manhattan/docs/index.html).~~
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## An overview of the DART ‘preprocess’ program

~~First and foremost, check out
[preprocess.html](https://ncar.github.io/DART/api/v0.0.6/program/preprocess.html)
for detailed information.~~

The *preprocess* program actually *builds* the source code that supports
observations. That source code is then used by all
the remaining modules. It is imperative to actually run
preprocess before building any executables. This is how the same code
can assimilate synthetic ‘observations’ for the Lorenz_63 model and
real radar reflectivities for WRF without needing to specify a set of
radar operators for the Lorenz_63 model!

preprocess combines multiple ‘obs_def’ modules into one
obs_def_mod.f90 that is then used by the rest of DART. Additionally,
a new obs_kind_mod.f90 is built that will provide support for
associating the specific observation TYPES with corresponding
(generic) observation QUANTITIES. More on that later. The list of
source codes is contained in the &preprocess_nml namelist and they
ultimately determine what observations and operators are supported. If
you want to add another ‘obs_def’ module, you must rerun
preprocess and recompile the rest of your project. preprocess is
designed to abort if the files it is supposed to build already exist.
For this reason, it is necessary to remove a couple files (if they
exist) before you run the preprocessor. It is just a good habit to
develop and is done automatically if you
use the DART quickbuild.csh script.

~~~
rm -f ../../../observations/forward_operators/obs_def_mod.f90
rm -f ../../../observations/forward_operators/obs_kind_mod.f90
./preprocess
ls -l ../../../observations/forward_operators/obs_def_mod.f90
ls -l ../../../observations/forward_operators/obs_kind_mod.f90
~~~

For example, with a namelist that looks like:

~~~
&preprocess_nml


input_obs_kind_mod_file  = ‘../../../assimilation_code/modules/observations/DEFAULT_obs_kind_mod.F90’
output_obs_kind_mod_file = ‘../../../assimilation_code/modules/observations/obs_kind_mod.f90’
input_obs_def_mod_file   = ‘../../../observations/forward_operators/DEFAULT_obs_def_mod.F90’
input_files              = ‘../../../observations/forward_operators/obs_def_gps_mod.f90’,


‘../../../observations/forward_operators/obs_def_QuikSCAT_mod.f90’,
‘../../../observations/forward_operators/obs_def_GWD_mod.f90’,
‘../../../observations/forward_operators/obs_def_altimeter_mod.f90’,
‘../../../observations/forward_operators/obs_def_reanalysis_bufr_mod.f90’




output_obs_def_mod_file  = ‘../../../observations/forward_operators/obs_def_mod.f90’
/




~~~

preprocess will combine DEFAULT_obs_def_mod.F90, obs_def_gps_mod.f90,
obs_def_QuikSCAT_mod.f90, obs_def_GWD_mod.f90, obs_def_altimeter_mod.f90,
and obs_def_reanalysis_bufr_mod.f90, into obs_def_mod.f90 -
which can be used by the rest of the project.

### Building and Running ‘preprocess’

preprocess is an executable, so it should come as no surprise that it
must be built in the normal DART fashion. The
DART/build_templates/mkmf.template must be correct for your
environment, and the input.nml must have your desired preprocess_nml
set correctly. Given that …

~~~
csh mkmf_preprocess
make
./preprocess
~~~

will build and run preprocess.

The first command generates an appropriate Makefile and the
input.nml.preprocess_default file. The second command results in the
compilation of a series of Fortran90 modules which ultimately produces
an executable file: preprocess. The third command actually runs
preprocess - which builds the new obs_kind_mod.f90 and
obs_def_mod.f90 source code files. The rest of DART may now be built.

### The rationale for ‘preprocess’

IMPORTANT: Since each ‘observation quantity’ may require different
amounts of metadata to be read or written; any routine to read or write
an observation sequence must be compiled with support for those
particular observations. This is the whole point of the
‘preprocess’ process! The supported observations are listed in the
input.nml&obs_kind_nml block.

For example, radar observations need extra metadata to specify the
location of the radar in addition to the location of the observation,
radiosondes only require the observation location. GPS occultations need
the locations of the two satellites so the forward operator can
integrate along the raypath, cosmic ray soil moisture sensors (yes, they
exist) have forward operators that require site-specific calibration
parameters that are not part of the model and must be included in the
observation metadata. That sort of thing.

For this reason, we strongly recommend that you use the DART routines
to read and process DART observation sequence files.

<span id=”obs_seq_overview” class=”anchor”></span>
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## An overview of the observation sequence

Observation sequences are complicated, there’s just no better way to
describe it. Trying to automatically accomodate a myriad of observation
file formats, structure, and metadata is simply not an easy task. For
this reason, DART has its own format for observations and a set of
programs to convert observations from their original formats to DART’s
format. There are definitely some things to know …

An obs_seq.in file actually contains no observation quantities.
It may be best thought of as a perfectly-laid-out notebook - just
waiting for an observer to fill in the actual observation quantities.
All the rows and columns are ready, labelled, and repeated for every
observation time and platform. This file is generally the start of a
“perfect model” experiment. Essentially, one instance of the model is
run through perfect_model_obs - which applies the appropriate
forward operators to the model state and ‘writes them down’ in our
notebook. The completed notebook is renamed obs_seq.out.

An obs_seq.out file contains a linked list of observations -
potentially (and usually) observations from different platforms and of
different quantities - each with their own error characteristics and
metadata. These files arise from running perfect_model_obs OR
from any number of converter programs. The creation of observation
sequences from real observations is not automatic and an email to the
DART team asking for advice for your specific types of observations is
perfectly within reason.

There is something called an obs_seq.final file - which contains
everything in the obs_seq.out file as well as a few additional
‘copies’ of the observation. Remember, DART is an ensemble algorithm.
Each ensemble member must compute its own estimate of the observation
for the algorithm. The obs_seq.final file may contain each of these
estimates (namelist controlled). Minimally, the mean and spread of the
ensemble estimates is recorded in the obs_seq.final file. The best
method of determining the performance of your ‘real world’ experiment is
to compare in observation-space since we can never know the model
state that perfectly represents the real world.

IMPORTANT: Since each ‘observation type’ may require different
amounts of metadata to be read or written; any routine to read or write
an observation sequence must be compiled with support for those
particular observations. The supported observations are listed in the
input.nml&obs_kind_nml block. This is the whole point of the
‘preprocess’ process …

<table>
<tr>
<th>observation sequence file structure</th>
<th>obs_seq.out</th>
<th>obs_seq.final</th>
</tr>
<tr>
<td valign=”top”>There are extensible parts of the observation sequence
file; for example, the number of observation kinds contained in the
file, whether the locations have 1 or more components, how
many quality control values are available for each
observation, where those quality control values come from,
how many ‘copies’ of each observation there
are … et cetera. The images to the right are links to
full-size images. **They are from entirely separate
experiments. They are just meant to show the flexibility
of the file format.**</td>
<td valign=”top”><a href=”../images/science_nuggets/obs_seq_out_diagram.png”><img


alt=”The structure of an obs_seq.out file”
border=”0” width=”300”
src=”../images/science_nuggets/obs_seq_out_diagram.png” /></a></td>





	<td valign=”top”><a href=”../images/science_nuggets/obs_seq_final_diagram.png”><img
	alt=”The structure of an obs_seq.final file”
border=”0” width=”300”
src=”../images/science_nuggets/obs_seq_final_diagram.png” /></a></td></tr>





</table>
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## Creating observations and sequences.

It is strongly encouraged that you use a single observation to test a
new model implementation.

Experience has shown that starting ‘simple’ is the fastest way to good
results. Starting with a single observation will exercise a
sufficient portion of the procedure and provide insight into where to
spend more effort. Starting with a single synthetic observation will
allow you to focus on the more interesting parts of the DART scheme
without getting bogged down in the world of observation data formats.

<span id=”obs_seq_osse”></span>

### Creating a synthetic observation sequence.

There are several steps to create an observation sequence file, which
follows directly from the modular nature of the DART programming
philosophy.


	Decide what observations you want to investigate and edit the
input.nml&obs_kind_nml block.


	Build and run preprocess to create code that supports the
observations you want.


	Build and run create_obs_sequence to define the specifics about
the observation you want.


	Build and run create_fixed_network_sequence to replicate those
specifics through time.


	Build and run perfect_model_obs to create an observation
consistent with the model state and specified error distribution at
the requested times and locations.




<span id=”L63_obs_generation”></span>

#### Example: generating observations for the Lorenz ‘63 model.

1) There are no ‘real’ observations for the Lorenz ‘63 model, so the
appropriate namelist settings are:

~~~
&obs_kind_nml


assimilate_these_obs_types = ‘RAW_STATE_VARIABLE’  /





	&preprocess_nml
	


input_obs_def_mod_file = ‘../../../observations/forward_operators/DEFAULT_obs_def_mod.F90’




output_obs_def_mod_file = ‘../../../observations/forward_operators/obs_def_mod.f90’
input_obs_kind_mod_file = ‘../../../assimilation_code/modules/observations/DEFAULT_obs_kind_mod.F90’





	output_obs_kind_mod_file = ‘../../../assimilation_code/modules/observations/obs_kind_mod.f90’
	input_files = ‘../../../observations/forward_operators/obs_def_1d_state_mod.f90’








/





~~~

2) Run preprocess in the normal fashion.

3) create_obs_sequence creates an observation set definition
(typically named set_def.out), the time-independent part of an
observation sequence. It may help to think of it as trying to define
what sorts of observations will be taken at one ‘reading’ … you walk
out to the box and take temperature, humidity, and wind observations all
at the same time and place, for example. You can think of it as one page
in an observer’s notebook, and only contains the location, type, and
observational error characteristics (normally just the diagonal
observational error variance) for a related set of observations. There
are no actual observation values, nor are there any times associated
with the definition. The program is interactive and queries the user for
the information it needs. Begin by creating a minimal observation set
definition in which each of the 3 state variables of L63 is directly
observed with an observational error variance of 1.0 for each
observation. To do this, use the following input sequence (the text
including and after # is a comment and does not need to be entered):

The following is a screenshot (much of the verbose logging has been left
off for clarity), the user input looks like this.


	~~~
	
	[unixprompt]$ ./create_obs_sequence
	Starting program create_obs_sequence
Initializing the utilities module.
Trying to log to unit   10
Trying to open file dart_log.out


	Starting … at YYYY MM DD HH MM SS =
	2017  3 28 10 15 30





set_nml_output Echo NML values to log file only
Trying to open namelist log dart_log.nml
——————————————————

————– ASSIMILATE_THESE_OBS_TYPES ————–
RAW_STATE_VARIABLE
————– EVALUATE_THESE_OBS_TYPES ————–
——————————————————

Input upper bound on number of observations in sequence



	4
	Input number of copies of data (0 for just a definition)



	0
	Input number of quality control values per field (0 or greater)



	0
	input a -1 if there are no more obs



	0
	Input -1 * state variable index for identity observations
OR input the name of the observation type from table below:
OR input the integer index, BUT see documentation…


1 RAW_STATE_VARIABLE









	-1

	input time in days and seconds






	0 0
	Input error variance for this observation definition



	1.0
	input a -1 if there are no more obs





0


{ this gets repeated … until you tell it to stop … }

input a -1 if there are no more obs





	-1

	Input filename for sequence (  set_def.out   usually works well)
set_def.out
write_obs_seq  opening formatted file set_def.out
write_obs_seq  closed file set_def.out









~~~

Rest assured that if you requested to assimilate more realistic
observation types, you will be queried for appropriate information by
create_obs_sequence. Below is a table that explains all of the input
you should need to supply for observations of the L63 model state.

~~~
4            # upper bound on num of observations in sequence
0            # number of copies of data (0 for just a definition)
0            # number of quality control values per field (0 or greater)
0            # -1 to exit/end observation definitions


	-1

	# observe state variable 1





0   0        # time – days, seconds
1.0          # observational variance
0            # -1 to exit/end observation definitions


	-2

	# observe state variable 2





0   0        # time – days, seconds
1.0          # observational variance
0            # -1 to exit/end observation definitions


	-3

	# observe state variable 3





0   0        # time – days, seconds
1.0          # observational variance
-1           # -1 to exit/end observation definitions

set_def.out  # Output file name
~~~

4) create_fixed_network_sequence takes the observation set
definition and repeats it in time, essentially making multiple pages in
our notebook. Again, the program is interactive and queries the user for
information. You should be able to simply follow the prompts. The table
below represents the input needed for the L63
example:

~~~
set_def.out    # Input observation set definition file
1              # Regular spaced observation interval in time
1000           # 1000 observation times
0, 43200       # First observation after 12 hours (0 days, 12 * 3600 seconds)
0, 43200       # Observations every 12 hours
obs_seq.in     # Output file for observation sequence definition
~~~

5) perfect_model_obs advances the model from the state defined by
the initial conditions file specified in the input.nml and ‘applies
the forward operator’ to harvest observations to fill in the observation
sequence specified in obs_seq.in. The observation sequence finally
has values for the observations and is saved in a file generally named
obs_seq.out. perfect_model_obs is namelist-driven, as opposed to
the previous two (whose input is a lot harder to specify in a namelist).
Take a look at (and modify if you like) the


input.nml&perfect_model_obs_nml section of the namelist.




The End. Not only should you have an observation sequence file (usually
obs_seq.out) , you also have a file containing the exact evolution of
the model consistent with those observations - the true state:
perfect_output.nc.
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## Real Observations - Converting to a DART-compatible format.

[OVERVIEW](#Overview) /
[DATA SOURCES](#DataSources) /
[DECISIONS](#Decisions) /
[PROGRAMS](#Programs) /
[FUTURE PLANS](#FuturePlans)

Real observations come in a mind-boggling diversity of formats. We have
converters for many formats in the DART/observations/obs_converters
directory. The documentation for that directory is listed in
[observations.html](Manhattan/observations/obs_converters/observations.html).

The converters are designed to work on one input file format and create
(or add to) an output observation sequence. It may be desirable to
post-process multiple observation sequence files with the
[obs_sequence_tool](https://ncar.github.io/DART/api/v0.0.6/program/obs_sequence_tool.html)
… to select for timeframe, geographic region, etc.

Many of the formats require their own libraries (like HDF), and require
intimate knowledge of the data format to extract the portions required
for the [DART observation sequence file](#obs_seq_overview).  Please
feel free to
browse the converters and their companion documentation. Feel free to
donate converters for formats we don’t already support! We like that
kind of stuff.

The DART framework enforces a clean separation between observations and
the models used for assimilation. The same observations can be used in
any model which understands how to generate a value for the requested
type of observation from the models’ state-space values (i.e. the
forward observation operator must exist - DART provides many for the
most common state variables).

In many cases, the original datasets are in a standard scientific format
like netCDF, HDF, or BUFR, and library routines for those formats can be
used to read in the original observation data. The DART software
distribution includes Fortran subroutines and functions to help create a
sequence of observations in memory, and then a call to the DART
observation sequence write routine will create an entire obs_seq file
in the correct format.

In many cases, a single, self-contained program can convert directly
from the observation location, time, value, and error into the DART
format. In other cases, especially those linking with a complicated
external library (e.g. BUFR), there is a two-step process with two
programs and an ASCII intermediate file. We are currently leaning
towards single-step conversions but either approach can be used for new
programs.

The DART system comes with several types of location modules for
computing distances appropriately. The two most commonly used are for
data in a 1D system and for data in a 3D spherical coordinate system.
All the programs in the DART/observations directory assume the
assimilation_code/location/threed_sphere/location_mod.f90 3D sphere
location module is being used.

With the myriad of observation file formats, HDF, Grib, BUFR, netCDF,
… we simply have not had the time nor need to support all of them. The
converters are a work in progress. There are currently about 10 other
observation sources and types which we are in the process of collecting
information and conversion programs for and which will eventually be
added to this directory. In the meantime, if you have converters for
data or interest in something that is not in the repository, please
email the DART group. Your best bet is to contact our group at
dart@ucar.edu with a specific request and we can steer you to the most
similar process.

### Overview

Real-world observations of earth-system data come from a variety of
sources, including radiosondes, satellites, ships, aircraft, weather
stations, etc. The files in this observations directory can be used to
convert data from a variety of native formats into a common DART
observation sequence format.

Synthetic observations are those not based on an actual instrument
reading of a system, but instead are fabricated to have a known value,
or have values computed by running a model, possibly with a fixed amount
of simulated noise added. These observations can be used for testing,
determining the sensitivity of the model to assimilation, and for
designing new observation systems. The DART system includes several ways
to create synthetic observations. See the [Programs](#Programs) section
below for more details.

The DART framework enforces a clean separation between observations and
the models they are assimilated into. The same observations can be used
in any model which understands how to generate a value for the requested
type of observation from its state space values.

In many cases a single, self-contained program can convert directly from
the observation location, time, value, and error into the DART format.
In other cases, especially those linking with a complicated external
library (e.g. BUFR), there is a two-step process with two programs and
an ASCII intermediate file. We are currently leaning towards single-step
conversions but either approach can be used for new programs.

Frequently the original datasets are in a standard scientific format
like netCDF, HDF, or BUFR, and library routines for those formats can be
used to read in the original observation data.

The DART software distribution includes Fortran subroutines and
functions to help create a sequence of observations in memory, and then
a call to the DART observation sequence write routine will create an
entire obs_seq file in the correct format.

The DART system comes with several types of location modules for
computing distances appropriately. Two of the ones most commonly used
are for data in a 1D system and for data in a 3D spherical coordinate
system. All the programs here assume the
location/threed_sphere/location_mod.f90 3D sphere location module is
being used.

There are currently some additional observation sources and types which
we are in the process of collecting information and conversion programs
for and which will eventually be added to this directory. In the
meantime, if you have converters for data or interest in something that
is not in the repository,
please [email the DART group](mailto:dart@ucar.edu).
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### DATA SOURCES AND FORMATS

See the various subdirectories here, which generally include information
on where the example data was obtained and in what format it is
distributed. Most data is available for download off the web. The Data
Support Section (DSS) at NCAR has large data repositories, the MADIS
data center distributes observations in netCDF format, GTS real-time
weather data is available from various sources. For new converters, if
you can find what format the data is distributed in you may be able to
adapt one of the existing converters here for your own use. Formats read
by the existing converters include netCDF, HDF, little-r, text,
Prepbufr, amongst others.

See the [Programs](#Programs) section below for a list of the current
converter programs.

If you have looked and none of the existing converters are right for
your data, here are some suggestions for where to start creating a new
converter. Create a new subdirectory in the observations directory.
Copy with the recursive option (cp -r) one of the existing converters
and adapt to your needs. Our suggestions for which converter to start
from depends on the format of your input observations to be converted.
If your input data format is:


format | advice |

:—– | :—– |

netCDF | Start with the MADIS converters, and in particular try the convert_madis_profiler.f90 file because it is the most straightforward. Another good option is SST/oi_sst_to_obs.f90. |

Comma separated text | Start with the Ameriflux converter. |

Generic text | Start with the text converter. |

HDF-EOS | Start with the AIRS converter. |

BUFR or prepBUFR | Start with the NCEP converter. |

Dense data, like Satellite swaths | Start with the tpw converter, which includes code that averages the raw data in space and time. |

Ray-path integrated data | Start with the GPS converter, which includes code that traces a path and integrates values along the ray. |

World Ocean Database packed ASCII | Start with the WOD converter. |



<!–
The existing DART csv readers are:
vi -R Ameriflux/level4_to_obs.f90 CHAMP/CHAMP_density_text_to_obs.f90 CNOFS/CNOFS_text_to_obs.f90 COSMOS/COSMOS_development.f90 COSMOS/COSMOS_to_obs.f90 MODIS/MOD15A2_to_obs.f90 ROMS/convert_roms_obs.f90 gnd_gps_vtec/gnd_gps_vtec_text_to_obs.f90 gps/convert_cosmic_gps_cdf.f90 gps/convert_cosmic_ionosphere.f90 quikscat/quikscat_JPL_mod.f90 snow/snow_to_obs.f90 text/text_to_obs.f90 text_GITM/text_to_obs.f90   –>
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### DECISIONS YOU MIGHT NEED TO MAKE

#### Time

Time enters into the assimilation system in 3 places: the timestamp of
the state vector data (the current model time when this data was
produced), the time of each observation, and the minimum time period the
model should be called to advance (the assimilation window size). The
internal timestepping of the model is unrelated to any of these times
and is outside the scope of the assimilation system.

The basic time type in DART is a pair of integers; one for the day
number and one for the number of seconds. Generally the low order
models, which aren’t direct geophysical models, use time directly as a
sequence of days starting at 0 and incrementing in any appropriate
number of seconds or days. The observations assimilated into these
systems do not need to use a calendar.

Observations of a real-world system usually are distributed with a
year/month/day, hour/min/seconds timestamp. There are routines in DART
to convert back and forth between the (day-number/seconds) format and a
variety of (year/month/day) calendars. See
[the time manager documentation](../../assimilation_code/modules/utilities/time_manager_mod.html#time_type)
for more details on how DART stores time information and the types of
available calendars. Some climate models which do long runs (100s or
1000s of years) use a modified calendar for simplicity in computation,
e.g. months which always have 30 days, or no leap years. When trying to
assimilate real observations into these models there may be calendar
issues to solve.

The smallest resolvable unit of time in DART is a second. To model a
system which operates on sub-second time scales the time can be scaled
up by some factor. As long as the observation time, the state data time,
and the minimum model advance time are expressed in the same scaled time
units, there is no problem.

#### Error Variances

Observations must specify an associated expected error variance. Each individual
observation stores its own error variance value, so it can be a constant value
for all observations of that type or it can vary by location, by height,
by magnitude of the observed value, etc. This value is the expected
instrument error variance plus the representativeness error variance of the model.
The model error variance includes deficiencies in the equations representing the
processes of the system as well as errors introduced by representing a
continuous system as a series of discrete points. While the instrument
error and the representativeness error could be specified separately,
they each have the same impact on the assimilation and can be difficult
to determine with any real accuracy. For simplicity, in DART (and most
current assimilation software) they are combined and specified as a
single value, which we frequently call the ‘observation error’. Keep in
mind we really mean ‘observation error variance’.

The instrument error is generally supplied by the instrument maker.
Sadly, it is frequently surprisingly difficult to find these values. For
the representativeness error, a set of artificial observations could be
generated with the
[perfect_model_obs](../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html)
program and an assimilation experiment could be run to generate an
estimate of the error in the model. In practice however most people make
an educated guess on the values of the error and then start with a
larger than expected value and decrease it based on the results of
running some test assimilations. For these tests the namelist for the
[outlier threshold](../../assimilation_code/programs/filter/filter.html#Namelist)
should be disabled by setting it to -1 (the default value is 3). This
value controls whether the observation is rejected because the observed
value is too far from the ensemble mean.

If the diagnostics show that the difference between the mean of the
forward operators and the observed value is consistently smaller than
the specified observation error, then the error is probably too large. A
error that is too large reduces the impact of an observation on the state. If
the specified observation error is too small it is likely the
observation will be rejected when the outlier threshold is enabled, and
the observation will not be assimilated. It is important to look at the
output observation sequence files after an assimilation to see how many
observations were assimilated or rejected, and also at the RMSE
([root mean squared error](http://www.wikipedia.org/wiki/RMSE)) versus the
total spread. DART includes Matlab diagnostic routines to create these
types of plots. The observation RMSE and total spread should be roughly
commensurate. The total spread includes contributions from both the
ensemble variance and the observational error variance, so it can be
adjusted by changing the error values on the incoming observations.
There are other ways to adjust the ensemble spread, including
[inflation](../../assimilation_code/programs/filter/filter.html#Inflation),
so the observation error is not the only factor to consider.

One last recommendation: if possible, the Prior forward operator values
should be compared against the observations after several assimilation
cycles. If you plot results using the Posterior values it is always
possible for the assimilation to overfit the observations and look good
on the diagnostic plots. But the actual test is to then advance the
model and look at how the forecast of the state compares to the
observations.

#### Observation Types

All observations have to have a specific ‘type’. There are namelist
controls to turn on and off the assimilation of observations at run-time
by type, or to only evaluate the forward operator for an observation but
have no impact on the state. Several of the diagnostics also group
observations by type to give aggregate statistics after an assimilation.
Generally types are based on both the observing platform or instrument
as well as the ‘kind’ of observation, e.g. RADIOSONDE_TEMPERATURE,
ARGO_SALINITY, etc. Each type is associated with a single underlying
generic ‘kind’, which controls what forward operator code is called
inside the model, e.g. QTY_TEMPERATURE, QTY_DENSITY, etc.

See the [obs_def_mod.html](../forward_operators/obs_def_mod.html) for more details on
how to use and add new DART types. The DART obs_kind_mod.f90 defines a
list of already defined observation types, and users can either use
existing observation types in ‘obs_def_xxx_mod.f90’ files, or define
their own. Be aware that obs_kind_mod.f90 is autogenerated by preprocess,
so until you configure and run preprocess, obs_kind_mod.f90 will not exist.

#### Observation Locations

The two most common choices for specifying the location of an
observation are the
[threed_sphere](../../assimilation_code/location/threed_sphere/location_mod.html)
and the [oned](../../assimilation_code/location/oned/location_mod.html)
locations. For observations of a real-world system, the 3D Sphere is
generally the best choice. For low-order, 1D models, the 1D locations
are the most commonly used. The observation locations need to match the
type of locations used in the model in that you cannot read observations
on a unit circle (1D) when using models that require 3D Sphere locations.

The choice of the vertical coordinate system may also be important.
For the 3D Sphere, the vertical coordinate system choices are:


string            | integer value | meaning  |

:—–            | :———— | :——  |

VERTISUNDEF       | -2            | has no specific vertical location (undefined) |

VERTISSURFACE     | -1            | surface value (value is surface elevation in m) |

VERTISLEVEL       |  1            | by model level |

VERTISPRESSURE    |  2            | by pressure (in pascals) |

VERTISHEIGHT      |  3            | by height (in meters) |

VERTISSCALEHEIGHT |  4            | by scale height (unitless) |



The choice of the vertical coordinate system may have ramifications for vertical
localization, depending on your model’s ability to convert from one coordinate
system to another. VERTISUNDEF is typically used for column-integrated quantities.
VERTISLEVEL only makes sense for synthetic observations.
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### PROGRAMS

The DART/observations/obs_converters directory contains a variety of
converter programs to read various external formats and convert the
observations into the format required by DART.

Each directory has at least one converter:



	[AIRS](AIRS/AIRS.html) <!– AURA –>


	[Aviso+/CMEMS](AVISO/AVISO.html)


	[Ameriflux](Ameriflux/level4_to_obs.html) <!– CHAMP –> <!– CNOFS –>


	[COSMOS](COSMOS/COSMOS_to_obs.html)


	[DWL](DWL/dwl_to_obs.html)


	[GPSPW](GPSPW/README)


	[GSI2DART](GSI2DART/README)


	[GTSPP](GTSPP/GTSPP.html)


	[MADIS](MADIS/MADIS.html)


	[MIDAS](MIDAS/MIDAS_to_obs.html)


	[MODIS](MODIS/MOD15A2_to_obs.htm)


	[NCEP (prepbufr -> ascii)](NCEP/prep_bufr/prep_bufr.html)


	[NCEP (ascii -> obs_seq)](NCEP/ascii_to_obs/create_real_obs.html)


	[ROMS](ROMS/ROMS.htm) <!– SABER –>


	[SSEC](SSEC/SSEC.html)


	[SST](SST/SST.html)


	[SSUSI](SSUSI/convert_f16_edr_dsk.html)


	[WOD](WOD/WOD.html)


	[cice](cice/cice_to_obs.html)


	[gnd_gps_vtec](gnd_gps_vtec/README)


	[GPS](gps/gps.html)


	[ok_mesonet](ok_mesonet/ok_mesonet.html)


	[QuikSCAT](quikscat/QuikSCAT.html)


	[Radar](radar/radar.html)


	[snow](snow/snow_to_obs.html)


	[Text](text/text_to_obs.html) <!– text_GITM –>


	[tpw](tpw/tpw.html)


	[Tropical Cyclones](tropical_cyclone/tc_to_obs.html)


	[Var (little-r)](var/littler_tf_dart.html)


	[Var (radar)](var/rad_3dvar_to_dart.html)







There are also a couple utilities of note:



	[even_sphere](even_sphere/README) - a utility for generating
evenly-spaced observation locations that can then be used in a
perfect model experiment.


	[obs_error](obs_error/README) - modules that specify observation
errors based on what is used by ECMWF and NCEP







In addition the following external program produces DART observation
sequence files:



	[Observation Processing And Wind Synthesis (OPAWS)](http://code.google.com/p/opaws/):
OPAWS can process NCAR Dorade (sweep) and NCAR EOL Foray (netCDF)
radar data. It analyzes (grids) data in either two-dimensions
(on the conical surface of each sweep) or three-dimensions (Cartesian).
Analyses are output in netCDF, Vis5d, and/or DART
(Data Assimilation Research Testbed) formats.







For generating synthetic observations, see the
[create_obs_sequence](../../assimilation_code/programs/create_obs_sequence/create_obs_sequence.html)
program documentation. You can also generate observation files based on
text input. See the [text_to_obs](text/text_to_obs.html) program
documentation. Or for simulating a large complex observing system, you
can use the DART library routines in a Fortran program to compute the
observation information and have the DART routines write the output
file.

See the
[perfect_model](../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html)
program documentation on how to run a model with a set of observations
that have only locations, types, and times, and have the forward
operators compute the observation values.
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### FUTURE PLANS

Contact the [DART development group](mailto:dart@ucar.edu) if you have
observations in a different format that you want to convert. We can give
you advice and pointers on how to approach writing the code.
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# Working with observation sequences.

First and foremost, check out the
[obs_sequence_tool.html](https://ncar.github.io/DART/api/v0.0.6/program/obs_sequence_tool.html)
document for detailed information and examples.

obs_sequence_tool is the primary tool for manipulating observation
sequence files. Observations sequence files are linked lists of
observations organized by time. That is to say, the observations may
appear in any order in the file, but traversing the linked list will
result in observations ordered by time. obs_sequence_tool can be
used to combine observation sequences, convert from ASCII to binary or
vice-versa, extract a subset of observations, etc.

For testing, it is terribly useful to extract a small number of
observations (like ONE) from an existing observation sequence file.
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# The difference between observation TYPE and QUANTITY.

Broadly speaking, observation TYPES are specific instances of a generic
observation QUANTITY. The distinction is useful for several reasons, not
the least of which is to evaluate observation platforms. Zonal wind
observations from QuikSCAT vs. radiosondes, for example. They are both
observations of zonal winds (what we call QTY_U_WIND_COMPONENT), but
they are different observation TYPES; QKSWND_U_WIND_COMPONENT, and
RADIOSONDE_U_WIND_COMPONENT, respectively. The forward observation
operators are implemented based on observation QUANTITY. When requested,
the model generates a QTY_U_WIND_COMPONENT, it doesn’t need to know
that it will be compared to a QuikSCAT value or a radiosonde value.

However, it is usually scientifically very interesting to be able to
compare the assimilations one TYPE of observation vs. another. One
observation sequence file can have lots of types of observations; DART
has the capability to assimilate (or evaluate) any combination of
observation types without getting bogged down in dataset management. The
same observation sequence can be used for experiments that
include/exclude certain observation types - ensuring that you are
performing the experiment you THINK you are performing
…

# Adding support for a new observation TYPE.

[DART/observations/forward_operators/obs_def_mod.html](https://ncar.github.io/DART/api/v0.0.6/module/obs_def_mod.html)
is the source for detailed information.

—



            

          

      

      

    

  

    
      
          
            
  # Publications using DART


This list gets updated as frequently as possible, however some more
recent publications may also be available on the UCAR/NCAR online
database [https://opensky.ucar.edu](https://opensky.ucar.edu/).
Simply use it and search for “ensemble data assimilation” (for
example). Many, if not most, are related to DART. The following list
also contains some publications from our collaborators. If you would
like to list your publication that uses DART, please let us know!
(dart@ucar.edu)




### To cite DART:

Cite DART using the following text:

> The Data Assimilation Research Testbed (Version X.Y.Z) [Software]. (2019). Boulder, Colorado: UCAR/NCAR/CISL/DAReS. [http://doi.org/10.5065/D6WQ0202](http://doi.org/10.5065/D6WQ0202)

Update the DART version and year as appropriate.

The seminal reference is:

Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn
and A. Arellano, 2009
The Data Assimilation Research Testbed: A Community Facility.
Bulletin of the American Meteorological Society, 90, 1283-1296,
[doi:10.1175/2009BAMS2618.1](http://dx.doi.org/10.1175/2009BAMS2618.1)
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## **R**esearch

DART research is broadly categorized along three avenues: one is the
research toward data assimilation algorithmic and computational
efficiency, another is toward implementing and exploiting the
information in observations with one model or another, and another is to
learn more about the behavior of an individual model - perhaps by
looking at systematic features of the increments.
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### Research Projects involving DART



	[Model Performance](#modelperformance)


	[WACCM](#waccm)


	[OpenGGCM](#space)


	[Chemical Transport](#chemistry)


	[[novel] observations like GPS RO](#gpsro)


	[Sensitivity Analyses](#sensitivity)


	[Carbon Monoxide](#cmaqco)


	[Data Assimilation on Mars](#mars)


	[Inertio-Gravity waves](#gravity)


	[Boundary Layer projects](#pbl1d)


	[Lorenz ‘96](#loworder)


	[[Damped] Adaptive] Inflation Algorithms


	Radar Reflectivity


	Ocean Modeling


	Tropical Cyclones
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### Model Performance

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/DARTspaghettiSquare_full.png” alt=”DART/CAM spaghetti plot” /></td>
<td>Ensemble Data assimilation can provide qualitative and quantitative uncertainty for quantities of interest to weather forecasters. <a href=”Research/CAM_Raeder/index.html”>[link to more information]</a><br />
<br />
Kevin Raeder, raeder@ucar.edu</td>
</tr>
</tbody>
</table>
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### Whole Atmosphere Community Climate Model (WACCM)

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/waccm_dart_ssw_t.png” alt=”WACCM graphic” width=”400” />  </td>
<td><h5 id=”excerpt”>This is an excerpt from <a href=”https://www2.cisl.ucar.edu/news/applying-the-science-and-technology-of-data-assimilation”>Applying the science and technology of data assimilation</a> by <em>Brian Bevirt</em> 07/11/2017 as part of a <em>CISL News</em> series describing the many ways CISL improves modeling beyond providing supercomputing systems and facilities.</h5>
These plots show measured and modeled zonal mean temperatures between 70N and 90N during the January 2009 sudden warming of the stratosphere. The bottom plot shows the observed temperatures (in degrees Kelvin, see legend at right), the center plot shows how this state of the atmosphere was simulated by the specified-dynamics version of the WACCM model, and the top plot shows WACCM’s improved result after using DART to assimilate middle atmosphere observations.<br />
<br />
The key point in this figure is that WACCM+DART captures both the stratosphere warming and mesosphere cooling that are seen in the observations. Also seen in the specified-dynamics version of WACCM, the elevated stratopause that forms at high altitudes around day 30 descends too fast compared to the observations. The elevated stratopause is maintained at a high altitude in the WACCM+DART simulation. This has implications for the descent of species from the mesosphere into the stratosphere. Accurate representation of the mesosphere dynamics is important for the ionosphere variability during sudden stratosphere warming events. (Figure courtesy of Nick Pedatella, HAO)<br />
<br />
<a href=”Research/WACCM_Pedatella/index.html”>[link to more information]</a><br />
<br />
Nick Pedatella, nickp@ucar.edu Hanli Liu, liuh@ucar.edu Jing Liu, jingliu@ucar.edu</td>
</tr>
</tbody>
</table>

<span id=”space” class=”anchor”></span>



### Open Geospace General Circulation Model (thermosphere/ionosphere/magnetosphere)

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/OpenGGCM_graphic.png” alt=”OpenGGCM graphic” width=”400” /></td>
<td>The primary goal of this project is to combine the OpenGGCM (Open Geospace General Circulation Model) with the NCAR Data Assimilation Research Testbed (DART), which implements an Ensemble Kalman Filter (EnKF) and will enable the sequential assimilation of ionosphere, thermosphere, and magetosphere data.<br />
<br />
We will also optimize model parameters by including them into the state vector. This will improve model accuracy even when no data are assimilated. <a href=”Research/OpenGGCM_Raeder/index.html”>[link to more information]</a><br />
<br />
Jimmy Raeder, J.Raeder@unh.edu</td>
</tr>
</tbody>
</table>

<span id=”chemistry” class=”anchor”></span>



### Chemical Data Assimilation

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/ChemicalWeather_NHprojection_full.png” alt=”CAM-Chem/DART CO Column” width=”400” /></td>
<td>We are currently applying an ensemble-based chemical data assimilation system, consisting of regional to global chemical transport models (CAM-Chem, WRF-Chem) in conjunction with DART, for a joint assimilation of meteorological observations and satellite-derived CO measurements from MOPITT and aerosol optical depth (AOD) measurements from MODIS. The chemical data assimilation system has been recently used for near-real time chemical forecasting (see <a href=”https://espo.nasa.gov/arctas/” class=”uri”>https://espo.nasa.gov/arctas/</a>) to support flight planning during the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). <a href=”Research/Chem_Arellano/index.html”>[link to more information]</a><br />
<br />
Ave Arellano, arellano@ucar.edu</td>
</tr>
</tbody>
</table>

<span id=”gpsro” class=”anchor”></span>



### GPS RO Observations and Tropical Cyclone Forecasting

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/GPS_LEO_full.png” alt=”GPS RO geometry schematic” width=”400” /></td>
<td>Profiles of atmospheric quantities deduced from GPS Radio Occultation data are available in otherwise data-sparse regions and provide information used to forecast the behavior of tropical cyclones. The <a href=”http://www.cosmic.ucar.edu/”>COSMIC/FORMOSAT-3</a> mission has been providing about 2000 data profiles per day since September 2007. <a href=”Research/GPS_Liu/index.html”>[link to more information]</a><br />
<br />
Hui Liu, hliu@ucar.edu</td>
</tr>
</tbody>
</table>
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### Sensitivity Analyses

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/2005082500_f048_DLMU_sens_full.png” alt=”DART/WRF sensitivity plot” width=”400” /></td>
<td>Forecast sensitivity analysis provides an objective means of evaluating how initial condition errors affect a forecast and where to gather additional observations to reduce forecast errors. Most sensitivity studies use the adjoint of a linearized forecast model to determine the gradient of a forecast metric with respect to the initial conditions. Adjoints suffer from a number of difficulties including coding, linearity assumptions, and moist processes. Ensemble-based sensitivity analysis provides an attractive alternative to adjoint-based methods because it combines data assimilation and sensitivity analysis in a consistent manner. This image illustrates the effect of zonal winds aloft on the position of Hurricane Katrina. <a href=”Research/Katrina_Torn/index.html”>[link to more information]</a><br />
<br />
<a href=”http://www.atmos.albany.edu/index.php?d=faculty.torn”>Ryan Torn</a>, torn@atmos.albany.edu</td>
</tr>
</tbody>
</table>

<span id=”cmaqco” class=”anchor”></span>



### Assimilation of CO

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/CMAQ_teasergraphic_full.png” alt=”CMAQ CO assimilation result” width=”400” /></td>
<td>This project describes an integrated approach to modeling atmospheric chemistry with trace gas data assimilation. Specifically, we ran CMAQ from within DART to assimilate both synthetic and real observations of CO for the period of June 2001. <a href=”Research/CMAQ_Zubrow/index.html”>[link to more information]</a><br />
<br />
Alexis Zubrow, azubrow@unc.edu</td>
</tr>
</tbody>
</table>
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### Assimilation on MARS

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/MarsWRF_teaser_full.png” alt=”DART/MARS_Lawson graphic” width=”400” /></td>
<td>The planetary atmospheres group at Caltech has produced a global and planetary version of NCAR’s WRF (Weather Research and Forecasting) Model. We are using DART to attempt data assimilation within the Mars atmosphere using the Mars version of WRF, MarsWRF, as our GCM. <a href=”Research/MARS_Lawson/index.html”>[link to more information]</a><br />
<br />
<a href=”http://www.gps.caltech.edu/people/wglawson/profile”>Greg Lawson</a>, wglawson@gps.caltech.edu</td>
</tr>
</tbody>
</table>
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### Inertio-Gravity waves

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/Zagar_1_full.png” alt=”DART/CAM normal modes” width=”400” /></td>
<td>This project aims at quantifying the impact of various motion types in analysis and forecast fields by using normal modes. The DART/CAM is the main analysis system used in the project. The first question addressed is about how large part of the atmospheric energy is associated with the inertio-gravity motions, an important part of the global circulation primarily because of their role in the tropical system. <a href=”Research/CAM_Zagar/index.html”>[link to more information]</a><br />
<br />
<a href=”http://www.fmf.uni-lj.si/~zagarn”>Nedjeljka Zagar</a>, nedjeljka.zagar@fmf.uni-lj.si</td>
</tr>
</tbody>
</table>

<span id=”pbl1d” class=”anchor”></span>



### Planetary Boundary Layer

<table>
<colgroup>
<col style=”width: 40%” />
<col style=”width: 60%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/JoshDorita_graphic_oneframe_full.png” alt=”DART/CAM spaghetti plot” width=”400” /></td>
<td>A long-term goal of this work is to find an efficient system for probabilistic planetary boundary layer (PBL) nowcasting that can be employed wherever surface observations are present. One approach showing promise is the use of a single column model (SCM) and ensemble filter data assimilation techniques. <a href=”Research/PBL_JoshDorita/index.html”>[link to more information]</a><br />
<br />
Dorita Rostkier-Edelstein, rostkier@ucar.edu<br />
Josh Hacker, hacker@ucar.edu</td>
</tr>
</tbody>
</table>

<span id=”loworder” class=”anchor”></span>



### The Lorenz ‘96 model

Lorenz, E. N., and K. A. Emanuel, 1998:
Optimal sites for supplementary weather observations: Simulations with a small model.
J. Atmos. Sci., 55, 399-414.
[10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2](https://doi.org/10.1175/1520-0469(1998)055%3C0399:OSFSWO%3E2.0.CO;2)

<table>
<colgroup>
<col style=”width: 33%” />
<col style=”width: 33%” />
<col style=”width: 33%” />
</colgroup>
<tbody>
<tr class=”odd”>
<td><img src=”../images/science_nuggets/L96BadRankHistogram_full.png” alt=”bad rank histogram”/></td>
<td>The Lorenz ‘96 model is one of our favorite models. In our implementation, it is a 40-variable model that can be used to test inflation algorithms, the effects of localization schemes, the integrity of the DART installation itself, the state-space diagnostic routines; it is extensively used in the tutorial, <strong>and</strong> can even be run as a standalone executable to test the MPI support on a machine. <a href=”Research/Lorenz96/index.html”>[link to more information]</a><br />
<br />

Jeff Anderson, jla@ucar.edu, and<br />
Tim Hoar, thoar@ucar.edu</td>
<td><img src=”../images/science_nuggets/L96GoodRankHistogram_full.png” alt=”good rank histogram”/></td>
</tr>
</tbody>
</table>





            

          

      

      

    

  

    
      
          
            
  —
title: Dart Tutorial
layout: default
—

# DART Tutorial

The DART Tutorial is intended to aid in the understanding of ensemble
data assimilation theory and consists of step-by-step concepts and
companion exercises with DART. The diagnostics in the tutorial use
Matlab®. To configure your environment to use Matlab and the
DART diagnostics, see the
[Configuring Matlab® for netCDF & DART](Getting_Starting.md#matlab)
section of the Getting_Started document.

<table>
<tbody>
<tr><td>Section 1 </td><td><a href=”../tutorial/section_01.pdf”>Filtering For a One Variable System</a></td></tr>
<tr><td>Section 2 </td><td><a href=”../tutorial/section_02.pdf”>The DART Directory Tree</a></td></tr>
<tr><td>Section 3 </td><td><a href=”../tutorial/section_03.pdf”>DART Runtime Control and Documentation</a></td></tr>
<tr><td>Section 4 </td><td><a href=”../tutorial/section_04.pdf”>How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.</a></td></tr>
<tr><td>Section 5 </td><td><a href=”../tutorial/section_05.pdf”>Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space</a></td></tr>
<tr><td>Section 6 </td><td><a href=”../tutorial/section_06.pdf”>Other Updates for An Observed Variable</a></td></tr>
<tr><td>Section 7 </td><td><a href=”../tutorial/section_07.pdf”>Some Additional Low-Order Models</a></td></tr>
<tr><td>Section 8 </td><td><a href=”../tutorial/section_08.pdf”>Dealing with Sampling Error</a></td></tr>
<tr><td>Section 9 </td><td><a href=”../tutorial/section_09.pdf”>More on Dealing with Error; Inflation</a></td></tr>
<tr><td>Section 10</td><td><a href=”../tutorial/section_10.pdf”>Regression and Nonlinear Effects</a></td></tr>
<tr><td>Section 11</td><td><a href=”../tutorial/section_11.pdf”>Creating DART Executables</a></td></tr>
<tr><td>Section 12</td><td><a href=”../tutorial/section_12.pdf”>Adaptive Inflation</a></td></tr>
<tr><td>Section 13</td><td><a href=”../tutorial/section_13.pdf”>Hierarchical Group Filters and Localization</a></td></tr>
<tr><td>Section 14</td><td><a href=”../tutorial/section_14.pdf”>Observation Quality Control</a></td></tr>
<tr><td>Section 15</td><td><a href=”../tutorial/section_15.pdf”>DART Experiments: Control and Design</a></td></tr>
<tr><td>Section 16</td><td><a href=”../tutorial/section_16.pdf”>Diagnostic Output</a></td></tr>
<tr><td>Section 17</td><td><a href=”../tutorial/section_17.pdf”>Creating Observation Sequences</a></td></tr>
<tr><td>Section 18</td><td><a href=”../tutorial/section_18.pdf”>Lost in Phase Space: The Challenge of Not Knowing the Truth</a></td></tr>
<tr><td>Section 19</td><td><a href=”../tutorial/section_19.pdf”>DART-Compliant Models and Making Models Compliant: Coming Soon</a></td></tr>
<tr><td>Section 20</td><td><a href=”../tutorial/section_20.pdf”>Model Parameter Estimation</a></td></tr>
<tr><td>Section 21</td><td><a href=”../tutorial/section_21.pdf”>Observation Types and Observing System Design</a></td></tr>
<tr><td>Section 22</td><td><a href=”../tutorial/section_22.pdf”>Parallel Algorithm Implementation: Coming Soon</a></td></tr>
<tr><td>Section 23</td><td><a href=”../tutorial/section_23.pdf”>Location Module Design</a></td></tr>
<tr><td>Section 24</td><td>Fixed Lag Ensemble Kalman Smoother (not available yet)</td></tr>
<tr><td>Section 25</td><td><a href=”../tutorial/section_25.pdf”>A Simple 1D Advection Model: Tracer Data Assimilation</a></td></tr>
</tbody>
</table>
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### The WRF Weather Model and DART

<span id=”WRFDART”></span>

> How does DART interact with running WRF?

Most users with large WRF domains run a single cycle of filter to do
assimilation, and then advance each ensemble member of WRF from a
script, possibly submitting them in a batch to the job queues.

For smaller WRF runs, if WRF can be compiled without MPI (the ‘serial’
configuration) then filter can cycle inside the same program, advancing
multiple ensemble members in parallel. See the WRF documentation pages
for more
details.

> I have completed running filter and I have the filter_restart.#### files.
> Can you refer me to the utility to convert them back to a set of wrfinput_d01 files?

<!– TJH FIXME … this section no longer appropriate for Manhattan … –>

If you are using the advance_model.csh script that is distributed
with DART, it will take care of converting the filter output files back
to the WRF input files for the next model advance.

If you are setting up a free run or doing something different than what
the basic script supports, read on to see what must be done.

When you finish running DART it will have created a set of
sssss.#### restart files, where the sssss part of the filename
comes from the setting of &filter_nml :: restart_out_file_name
(and is frequently filter_restart). The .#### is a 4 digit
number appended by filter based on the ensemble number. These files
contain the WRF state vector data that was used in the assimilation,
which is usually a subset of all the fields in a wrfinput_d01 file.

dart_to_wrf is the standard utility to insert the DART state
information into a WRF input file, e.g. wrfinput_d01. For multiple
WRF domains, a single run of the converter program will update the
_d02, _d03, …, files at the same time as the _d01 file.

In the input.nml file, set the following:

~~~
&dart_to_wrf_nml


model_advance_file = .false.
dart_restart_name  = ‘filter_restart.####’,





/

where ‘####’ is the ensemble member number. There is no option to
alter the input/output WRF filename. Run dart_to_wrf. Remember to
preserve each wrfinput_d01 file or you will simply keep overwriting
the information in the same output file. Repeat for each ensemble member
and you will be ready to run WRF to make ensemble forecasts.

If filter is advancing the WRF model, and you want to spawn forecasts
from intermediate assimilation steps:
Use the assim_model_state_ic.#### files instead of the
filter_restart.#### files, and set the model_advance_file
namelist item to be .true. .

[[top](#)]
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## List of ford documentation versions

{% assign sorted = site.api | sort: ‘title’ | reverse %}
<table>



	<tr>
	<th>API Documents</th>





</tr>
{% for api in sorted %}
<tr>


<td><a href=”https://aniemack.github.io/test{{ api.url }}”>{{ api.title }}</a></td>




</tr>
{% endfor %}




</table>
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# DART_LAB Tutorial

## Overview
DART_LAB is a MATLAB®-based tutorial to demonstrate the principles of
ensemble data assimilation.
DART_LAB consists of PDF tutorial materials and MATLAB® exercises.
See below for links to the PDF files and a list of the
corresponding MATLAB scripts.
The DART_LAB tutorial begins at a more introductory level than the materials in
the tutorial directory, and includes hands-on exercises at several points.
<!– In a workshop setting, the full tutorial materials and exercises took
about 1.5 days to complete. –>



<table>
<tbody>
<tr><td>Section 1</td><td><a href=”../DART_LAB/presentation/DART_LAB_Section_01.pdf”>The basics in 1D.</a></td></tr>
<tr><td>Section 2</td><td><a href=”../DART_LAB/presentation/DART_LAB_Section_02.pdf”>How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.</a></td></tr>
<tr><td>Section 3</td><td><a href=”../DART_LAB/presentation/DART_LAB_Section_03.pdf”>Sampling error and localization.</a></td></tr>
<tr><td>Section 4</td><td><a href=”../DART_LAB/presentation/DART_LAB_Section_04.pdf”>The Ensemble Kalman Filter (Perturbed Observations).</a></td></tr>
<tr><td>Section 5</td><td><a href=”../DART_LAB/presentation/DART_LAB_Section_05.pdf”>Adaptive Inflation.</a></td></tr>
</tbody>
</table>

<span id=”Matlab”></span>



## MATLAB® Hands-On Exercises

In the matlab subdirectory are a set of MATLAB scripts and GUI
(graphical user interface) programs which are exercises that go with the
tutorial. Each is interactive with settings that can be changed and
rerun to explore various options. A valid
[MATLAB](http://www.mathworks.com/products/matlab/)
license is needed to run these scripts.

The exercises use the following functions:


function            | description |

—                 | :—         |

gaussian_product  | graphical representation of the product of two gaussians |

oned_ensemble     | explore the details of ensemble data assimilation for a scalar |

oned_model        | simple ensemble data assimilation example |

oned_model_inf    | simple ensemble data assimilation example with inflation |

run_lorenz_63     | ensemble DA with the 3-variable Lorenz ‘63 dynamical model - the “butterfly” model |

run_lorenz_96     | ensemble DA with the 40-variable Lorenz ‘96 dynamical model |

run_lorenz_96_inf | ensemble DA with the 40-variable Lorenz ‘96 dynamical model with inflation |

twod_ensemble     | demonstrates the impact of observations on unobserved state variables |



To run these, cd into the DART_LAB/matlab directory, start matlab, and
type the names at the prompt.
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# DART parallelism

This document has two sections, the first is DART’s use of MPI for the
core DART routines, and the second section
[‘Filter&nbsp;“async”&nbsp;Mode&nbsp;Diagrams’](#async0)
describes the options for advancing models that may or may not
have their own parallel considerations.

## Introduction

The latest release of the DART system includes an MPI option. MPI stands
for ‘Message Passing Interface’, and is both a library and run-time
system that enables multiple copies of a single program to run in
parallel, exchange data, and combine to solve a problem more quickly.
The latest release of DART does NOT require MPI to run; the default
build scripts do not need nor use MPI in any way. However, for larger
models with large state vectors and large numbers of observations, the
data assimilation step will run much faster in parallel, which requires
MPI to be installed and used. However, if multiple ensembles of your
model fit comfortably (in time and memory space) on a single processor,
you need read no further about MPI.

MPI is an open-source standard; there are many implementations of it. If
you have a large single-vendor system it probably comes with an MPI
library by default. For a Linux cluster there are generally more
variations in what might be installed; most systems use a version of MPI
called MPICH. In smaller clusters or dual-processor workstations a
version of MPI called either LAM-MPI or OpenMPI might be installed, or
can be downloaded and installed by the end user. (Note that OpenMP is a
different parallel system; OpenMPI is a recent effort with a confusingly
similar name.)

An “MPI program” makes calls to an MPI library, and needs to be compiled
with MPI include files and libraries. Generally the MPI installation
includes a shell script called mpif90 which adds the flags and
libraries appropriate for each type of fortran compiler. So compiling an
MPI program usually means simply changing the fortran compiler name to
the MPI script name.

These MPI scripts are built during the MPI install process and are
specific to a particular compiler; if your system has multiple fortran
compilers installed then either there will be multiple MPI scripts
built, one for each compiler type, or there will be an environment
variable or flag to the MPI script to select which compiler to invoke.
See your system documentation or find an example of a successful MPI
program compile command and copy it.

<span id=”DART_MPI”></span>

## DART use of MPI

To run in parallel, only the DART filter program (and possibly the
companion wakeup_filter program) need be compiled with the MPI
scripts. ~~All other DART executables should be compiled with a standard
F90 compiler and are not MPI enabled.~~ (And note again that filter can
still be built as a single executable like previous releases of DART;
using MPI and running in parallel is simply an additional option.) To
build a parallel version of the filter program, the mkmf_filter
command needs to be called with the ‘-mpi’ option to generate a Makefile
which compiles with the MPI scripts instead of the basic Fortran compiler.

See the quickbuild.csh script in each $DART/models/*/work directory
for the commands that need to be edited to enable the MPI utilities. You
will also need to edit the $DART/build_templates/mkmf.template file to call the
proper version of the MPI compile script if it does not have the default
name, is not in a standard location on the system, or needs additional
options set to select between multiple Fortran compilers.

MPI programs generally need to be started with a shell script called
mpirun or mpiexec, but they also interact with any batch control
system that might be installed on the cluster or parallel system.
Parallel systems with multiple users generally run some sort of batch
system (e.g. LSF, PBS, SLURM, POE, LoadLeveler, etc). You submit a job request
to this system and it schedules which nodes are assigned to which jobs.
Unfortunately the details of this vary widely from system to system;
consult your local web pages or knowledgeable system admin for help
here. Generally the run scripts supplied with DART have generic sections
to deal with LSF, PBS, no batch system at all, and sequential execution,
but the details (e.g. the specific queue names, accounting charge codes)
will almost certainly have to be adjusted.

The data assimilation process involves running multiple copies
(ensembles) of a user model, with an assimilation computation
interspersed between calls to the model. There are many possible
execution combinations, including:



	Compiling the assimilation program filter with the model,
resulting in a single executable. This can be either a sequential or
parallel program.


	Compiling filter separately from the model, and having 2 separate
executables. Either or both can be sequential or parallel.







The choice of how to combine the filter program and the model has 2
parts: building the executables and then running them. At build time,
the choice of using MPI or not must be made. At execution time, the
setting of the async namelist value in the filter_nml section
controls how filter interacts with the model.

Choices include:



	async = 0
The model and filter programs are compiled into a single executable,
and when the model needs to advance, filter calls a
subroutine. See [the async 0 diagram](#async0) which
illustrates this option.


	async = 2
The model is compiled into a sequential (single task) program. If
filter is running in parallel, each filter task will execute the
model independently to advance the group of ensembles. See
[the async 2 diagram](#async2) which illustrates this option.


	async = 4
The model is compiled into an MPI program (parallel) and only
filter task 0 tells the startup script when it is time to advance
the model. Each ensemble is advanced one by one, with the model
using all the processors to run in parallel. See
[the async 4 diagram](#async4) which illustrates this option.


	async ignored (sometimes referred to as ‘async 5’, but not an actual namelist setting)
This is the way most large models run now. There is a separate
script, outside of filter, which runs the N copies of the model to
do the advance. Then filter is run, as an MPI program, and it only
assimilates for a single time and then exits. The external script
manages the file motion between steps, and calls both the models and
filter in turn.







This release of DART has the restriction that if the model and the
filter program are both compiled with MPI and are run in ‘async=4’
mode, that they both run on the same number of processors; e.g. if
filter is run on 16 processors, the model must be started on 16
processors as well. Alternatively, if the user model is compiled as a
single executable (async=2), filter can run in parallel on any number
of processors and each model advance can be executed independently
without the model having to know about MPI or parallelism.

Compiling and running an MPI application can be substantially more
complicated than running a single executable. There are a suite of small
test programs to help diagnose any problems encountered in trying to run
the new version of DART. Look in
[developer_tests/mpi_utilities/tests/README](../../developer_tests/mpi_utilities/tests/README)
for instructions and a set of tests to narrow down any difficulties.

### Performance issues and timing results

Getting good performance from a parallel program is frequently
difficult. Here are a few of reasons why:



	Amdahl’s law
You can look up the actual formula for this “law” in the Wikipedia,
but the gist is that the amount of serial code in your program
limits how much faster your program runs on a parallel machine, and
at some point (often much sooner than you’d expect) you stop getting
any speedup when adding more processors.


	Surface area to volume ratio
Many scientific problems involve breaking up a large grid or array
of data and distributing the smaller chunks across the multiple
processors. Each processor computes values for the data on the
interior of the chunk they are given, but frequently the data along
the edges of each chunk must be communicated to the processors which
hold the neighboring chunks of the grid. As you increase the number
of processors (and keep the problem size the same) the chunk size
becomes smaller. As this happens, the ‘surface area’ around the
edges decreases slower than the ‘volume’ inside that one processor
can compute independently of other processors. At some point the
communication overhead of exchanging edge data limits your speedup.


	Hardware architecture system balance
Raw CPU speeds have increased faster than memory access times, which
have increased faster than access to secondary storage (e.g. I/O to
disk). Computations which need to read input data and write result
files typically create I/O bottlenecks. There are machines with
parallel filesystems, but many programs are written to have a single
processor read in the data and broadcast it to all the other
processors, and collect the data on a single node before writing. As
the number of processors increases the amount of time spent waiting
for I/O and communication to and from the I/O node increases. There
are also capacity issues; for example the amount of memory available
on the I/O node to hold the entire dataset can be insufficient.


	NUMA memory
Many machines today have multiple levels of memory: on-chip private
cache, on-chip shared cache, local shared memory, and remote shared
memory. The approach is referred as Non-Uniform Memory Access (NUMA)
because each level of memory has different access times. While in
general having faster memory improves performance, it also makes the
performance very difficult to predict since it depends not just on
the algorithms in the code, but is very strongly a function of
working-set size and memory access patterns. Beyond shared memory
there is distributed memory, meaning multiple CPUs are closely
connected but cannot directly address the other memory. The
communication time between nodes then depends on a hardware switch
or network card, which is much slower than local access to memory.
The performance results can be heavily influenced in this case by
problem size and amount of communication between processes.







Parallel performance can be measured and expressed in several different
ways. A few of the relevant definitions are:



	Speedup
Generally defined as the wall-clock time for a single processor
divided by the wall-clock time for N processors.


	Efficiency
The speedup number divided by N, which for perfect scalability will
remain at 1.0 as N increases.


	Strong scaling
The problem size is held constant and the number of processors is
increased.


	Weak scaling
The problem size grows as the number of processors increases so the
amount of work per processor is held constant.







We measured the strong scaling efficiency of the DART ‘filter’ program
on a variety of platforms and problem sizes. The scaling looks very good
up to the numbers of processors available to us to test on. It is
assumed that for MPP (Massively-Parallel Processing) machines with
10,000s of processors that some algorithmic changes will be required.
These are described in Anderson & Collins
[“Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation”](https://doi.org/10.1175/JTECH2049.1) 2007.

### User considerations for their own configurations

Many parallel machines today are a hybrid of shared and distributed
memory processors; meaning that some small number (e.g. 2-32) of CPUs
share some amount of physical memory and can transfer data quickly
between them, while communicating data to other CPUs involves slower
communication across either some kind of hardware switch or fabric, or a
network communication card like high speed ethernet.

Running as many tasks per node as CPUs per shared-memory node is in
general good, unless the total amount of virtual memory used by the
program exceeds the physical memory. Factors to consider here include
whether each task is limited by the operating system to 1/Nth of the
physical memory, or whether one task is free to consume more than its
share. If the node starts paging memory to disk, performance takes a
huge nosedive.

Some models have large memory footprints, and it may be necessary to run
in MPI mode not necessarily because the computation is faster in
parallel, but because the dataset size is larger than the physical
memory on a node and must be divided and spread across multiple nodes to
avoid paging to disk.
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## Filter async mode diagrams

### Options for parallelism both in DART and in the model advances:

### Simplest case, async=0:
[<img src=”../images/async0.gif”>](../images/async0.gif)

This is a single MPI executable, with each call to the model being
simply a subroutine call from each MPI task.
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### Parallel advance, async=2:
[<img src=”../images/async2a.gif”>](../images/async2a.gif)

The filter executable is one MPI program, and the model is a single,
sequential executable. Each MPI task uses the unix “system()” call to
invoke a shell script (advance_model.csh) which runs the models as
independent programs.

Other views of how the async=2 option is structured; these may be more
or less helpful.

#### Parallel advance, async=2:
[<img src=”../images/async2_v1.gif”>](../images/async2_v1.gif)

#### Parallel advance, async=2, second version:
[<img src=”../images/async2_v2.gif”>](../images/async2_v2.gif)

#### Parallel model advance, async=2,

showing how data is communicated
between filter and the model thru intermediate files.
IC are ‘initial condition’ files, UD are ‘updated’ files.
[<img src=”../images/async2_wfiles.gif”>](../images/async2_wfiles.gif)
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### Parallel model advance, async=4:
[<img src=”../images/async4.gif”>](../images/async4.gif)

The filter executable is one MPI program, and the model is also an MPI
program. The filter executable communicates with the runme_filter shell
script, which sequentially invokes mpirun to advance each of the model
runs, one per ensemble member, still using advance_model.csh.

Parallel model advance, async=4, showing how data is communicated
between filter and the model thru intermediate files.
IC are ‘initial condition’ files, UD are ‘updated’ files.
[<img src=”../images/async4_wfiles.gif”>](../images/async4_wfiles.gif)
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# DART Manhattan Release Notes

## Dart Overview

The Data Assimilation Research Testbed (DART) is designed to facilitate
the combination of assimilation algorithms, models, and real (or
synthetic) observations to allow increased understanding of all three.
The DART programs are highly portable, having been compiled with many
Fortran 90 compilers and run on linux compute-servers, linux clusters,
OSX laptops/desktops, SGI Altix clusters, supercomputers running AIX,
and more. Read the
[Customizations](Getting_Starting.html#customizations)
section for help in building on new platforms.

DART employs a modular programming approach to apply an Ensemble Kalman
Filter which adjusts model values toward a state that is more consistent
with information from a set of observations. Models may be swapped in
and out, as can different algorithms in the Ensemble Kalman Filter. The
method requires running multiple instances of a model to generate an
ensemble of states. A forward operator appropriate for the type of
observation being assimilated is applied to each of the states to
generate the model’s estimate of the observation. Comparing these
estimates and their uncertainty to the observation and its uncertainty
ultimately results in the adjustments to the model states. See the
[DART_LAB](dart_lab.html) demos or read more
[in the DART tutorial](Tutorial.html).

DART diagnostic output can be written that contains the model state
before and after the adjustment, along with the ensemble mean and
standard deviation, and prior or posterior inflation values if inflation
is enabled. There is also a text file, obs_seq.final, with the model
estimates of the observations. There is a suite of MATLAB® functions
that facilitate exploration of the results, but the netCDF files are
inherently portable and contain all the necessary metadata to interpret
the contents with other analysis programs such as NCL, R, etc.

To get started running with Lorenz 63 model refer to
[Getting FIXME Started](Manhattan_getting_started.html)
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## Notes for Current Users - FIXME -

If you have been updating from the rma_trunk branch of the DART
subversion repository you will notice that the code tree has been
simplified to be more intuitive for users. The new top level directory
structure looks like :



	README


	COPYRIGHT


	assimilation_code


	build_templates


	diagnostics


	docs


	models


	observations







~~We suggest that current users checkout a fresh version of Manhattan in a
new location. To see which files need to be moved, run ‘svn status’ on
your original checked out version. Anything with an M or ? in the first
column needs to be moved to the new location in the new tree.~~ Please
[contact](mailto:dart@ucar.edu) DART if you have any issues migrating
your existing code to the new tree structure.

There is a list of non-backwards compatible changes
([see below](#Nonbackward)), and a list of new options and functions.

The Manhattan release will continue to be updated for the next few
months as we continue to add features. Checking out the Manhattan
release branch and running ‘svn update’ from time to time is the
recommended way to update your DART tree.
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## Non-backwards Compatible Changes

Unlike previous releases of DART, this version contains more
non-backwards compatible changes than usual. Please examine the
following list carefully. We do suggest you check out the Manhattan
release into a new location and migrate any local changes from previous
versions as a second step.

Changes in the Manhattan release (15 May 2015) which are not backwards
compatible with the Lanai release (13 Dec 2013):


	We no longer require model data to be converted to DART format
restart files. We directly read and write netCDF format only. To
specify the input and output files for filter, there are new
namelist items in the &filter_nml namelist:
‘input_state_file_list’ and ‘output_state_file_list’ .


	The information formerly in Prior_Diag.nc and
Posterior_Diag.nc has been moved. If you are reading and writing
ensemble members from different files, the state information, the
ensemble mean and standard deviation, and the inflation mean and
standard deviation will all be read and written to separate files:



	[stage]_member_####.nc


	[stage]_mean.nc


	[stage]_sd.nc


	[stage]_priorinf_{mean,sd}.nc (if prior inflation is turned on)


	[stage]_postinf_{mean,sd}.nc (if posterior inflation is turned on)







If you are reading and writing ensemble members from a single file,
all this information will now be in a single netCDF file but will be
stored in different variables inside that file:



	[var].nc


	[var]_mean.nc


	[var]_sd.nc


	[var]_priorinf_{mean,sd}.nc (if prior inflation is turned on)


	[var]_postinf_{mean,sd}.nc (if posterior inflation is turned on)







We also now have options for writing files at four stages of the
assimilation cycle: ‘input’, ‘preassim’, ‘postassim’, ‘output’.
This is set in the &filter_nml namelist with `stages_to_write`.



	New model_mod.f90 required routines:



	vert_convert()


	query_vert_localization_coord()


	pert_model_copies()


	read_model_time()


	write_model_time()







There are default version of these available to use if you have no
special requirements.



	Several of the model_mod.f90 argument lists have changed



	model_interpolate() now takes in the ‘state_handle’ as an
argument rather than a state vector array. It also return an
array of ‘expected_obs’ and ‘istatus’ for each of the ensemble
members


	get_state_meta_data() also requires the ‘state_handle’ as
an argument rather than a state vector array.


	nc_write_model_atts() has an additional argument
model_mod_writes_state_variables. If TRUE then the model_mod
is expected to write out the state variables, if FALSE DART will
write out the state variable (this is the prefered method for
adding new models, it requires less code from the model developer)









	There are several namelist changes mainly in the &filter_nml and
&perfect_model_mod which are outlined in detail in
[Manhattan_diffs_from_Lanai](Manhattan_diffs_from_Lanai.html)


	All modules have been moved to DART/assimilation_code/modules/
directory. And similarly all of the programs have moved to
DART/assimilation_code/programs/


	The location modules which were stored in locations have moved to
DART/assimilation_code/location directory


	The observation converters which were stored in observations have
moved to DART/observations/obs_converters directory


	The forward operators have moved from
obs_def/obs_def_*_mod.f90 to
observations/forward_operators


	The tutorial files have moved to DART/docs/tutorial
directory


	The program fill_inflation_restart is OBSOLETE since DART
inflation files are now in netCDF format. Now inflation files can be
filled using ncap2. Here is an example using version 4.4.2 or
later of the NCO tools:


	```
	ncap2 -s “T=1.0;U=1.0;V=1.0” wrfinput_d01 prior_inf.nc’
ncap2 -s “T=0.6;U=0.6;V=0.6” wrfinput_d01 prior_sd.nc’





```



	The default flags in the mkmf_template.XXX files have been updated
to be more consistent with current compiler versions.


	If you enable the sampling error correction option, the required
data is now read from a single netCDF file which supports multiple
ensemble sizes. A program is provided to compute additional ensemble
sizes if they are not in the default file.


	Our use of TYPES and KINDS has been very confusing in the past. In
Manhattan we have tried to make it clearer which things in DART are
generic quantities (QTY) - temperature, pressure, etc - and which
things are specific types of observations - Radiosonde_temperature,
Argo_salinity etc.

Below is a mapping between old and new routine names here for
reference. We have made these changes to all files distributed with
DART. If you have lots of code developed outside of the subversion
repository, please contact [DART](mailto:dart@ucar.edu) for a sed
script to help automate the changes.

Public routines, existing name on left, replacement on right:


	~~~
	assimilate_this_obs_kind()     =>     assimilate_this_type_of_obs(type_index)
evaluate_this_obs_kind()       =>       evaluate_this_type_of_obs(type_index)
use_ext_prior_this_obs_kind()  =>  use_ext_prior_this_type_of_obs(type_index)

get_num_obs_kinds()            =>  get_num_types_of_obs()
get_num_raw_obs_kinds()        =>  get_num_quantities()

get_obs_kind_index()           => get_index_for_type_of_obs(type_name)
get_obs_kind_name()            => get_name_for_type_of_obs(type_index)

get_raw_obs_kind_index()       =>  get_index_for_quantity(qty_name)
get_raw_obs_kind_name()        =>  get_name_for_quantity(qty_index)

get_obs_kind_var_type()        =>  get_quantity_for_type_of_obs(type_index)

get_obs_kind()                 =>  get_obs_def_type_of_obs(obs_def)
set_obs_def_kind()             =>  set_obs_def_type_of_obs(obs_def)

get_kind_from_menu()           =>  get_type_of_obs_from_menu()

read_obs_kind()                =>   read_type_of_obs_table(file_unit, file_format)
write_obs_kind()               =>  write_type_of_obs_table(file_unit, file_format)

maps obs_seq nums to specific type nums, only used in read_obs_seq:
map_def_index()                => map_type_of_obs_table()

removed this.  apparently unused, and simply calls get_obs_kind_name():
get_obs_name()

apparently unused anywhere, removed:
add_wind_names()
do_obs_form_pair()





~~~

Public integer parameter constants and routine formal argument
names, old on left, new on right:


	~~~
	KIND_ => QTY_
kind  => quantity

TYPE_ => TYPE_
type  => type_of_obs

integer parameters:
max_obs_generic  =>  max_defined_quantities  (not currently public, stays private)
max_obs_kinds    =>  max_defined_types_of_obs





~~~



	For smaller models we support single file input and output. These
files contain all of the member information, mean, standard
deviation and inflation values for all of the state variables. This
can be run with cycling and all time steps will be appended to the
file.

For perfect_model_obs we provide a perfect_input.cdl file
which contains a single ensemble member which will be considered the
‘truth’ and observations will be generated based on those values.
The output will contain all of the cycling timesteps all of the
state variables.

For filter we provide a filter_input.cdl file which contains
all of the state member variables and potentially inflation mean and
standard deviation values. The output will contain all of the
cycling timesteps all of the state variables. Additionally you have
the option to write out different stages during the assimilation in
the &filter_nml ‘stages_to_write’ mentioned above.

To generate a netCDF file from a .cdl file run:

>  ncgen -o perfect_input.nc perfect_input.cdl
>  ncgen -o filter_input.nc filter_input.cdl
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## New Features



	DART now reads and writes netCDF files for the model state
information. If your model uses netCDF file format, you no longer
need model_to_dart or dart_to_model to translate to a DART
format file. If your model does not use netCDF, you can adapt your
model_to_dart and dart_to_model executables to read and write a
netCDF file for DART to use.

The read/write code is part of the core DART routines so no code is
needed in the model_mod model-specific module. There is a new
routine [add_domain()](state_structure.html) that a
model_mod::static_init_model() can user to define which netCDF
variables should be part of the model state, and what DART quantity
(formerly kind) they correspond to.



	DART no longer limits the size of a model state to the size of a
single MPI task’s memory. The state is read in variable by variable
and distributed across all MPI tasks, so the memory use is much
smaller than previous versions of DART. One-sided MPI communication
is used during the computation of forward operator values to get
required parts of the state from other tasks.


	Many of the DART namelists have been simplified, and some items have
moved to a more specific namelist.


	Observation sequence files can include externally computed forward
operator values which can be used in the assimilation instead of
calling a forward operator inside DART.


	The DART directory structure has been reorganized to make it easier
to identify the various software tools, modules, documentation and
tutorials supplied with the system.


	The MATLAB® diagnostic routines have been updated to not require the
MEXNC toolbox. These routines use the built-in netCDF support that
comes with MATLAB®.


	There is a new Particle Filter type. Please contact us if you are
interested in using it.


	DART can now take subsets of observation types and restrict them
from impacting certain quantities in the state during the
assimilation. A tool to simplify constructing the table of
interactions is provided (obs_impact_tool).


	
	State Structure
	
	Contains information about dimensions and size of variables in
your state. There is a number of accessor functions to get
variable information such as get_variable_size(). See the
[state_structure.html](state_structure.html) for more details.










	The POP model_mod now can interpolate Sea Surface Anomaly
observations.
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## Supported Models

Currently we support the models listed below. There are several new
models that have been added that are not on the Lanai Release including
CM1, CICE, and ROMS. Any previously supported models not on this list
are still supported in DART
[classic](http://www.image.ucar.edu/DAReS/DART/classic/index.html)



	
	9var
	
	DART interface documentation for the
[9var](models/9var/model_mod.html) model.










	
	bgrid_solo
	
	DART interface documentation for the





[bgrid solo](models/bgrid_solo/model_mod.html) model.










	
	cam-fv
	
	DART interface documentation for the





[CAM finite volume](models/cam-fv/model_mod.html) global atmospheric model.





	Documentation for the





[CAM model](http://www.cesm.ucar.edu/models/atm-cam/).










	
	cice (NEW)
	
	DART interface documentation for the
[CICE](models/cice/model_mod.html) model.


	Documentation for the
[CICE model](http://www.cesm.ucar.edu/models/ccsm4.0/cice/).










	
	cm1 (NEW)
	
	DART interface documentation for the
[CM1 cloud-resolving model](models/cm1/model_mod.html).


	Documentation for the
[CM1 model](http://www2.mmm.ucar.edu/people/bryan/cm1/).










	
	forced_lorenz_96
	
	DART interface documentation for the
[forced lorenz_96](models/forced_lorenz_96/model_mod.html) model.










	
	lorenz_63
	
	DART interface documentation for the
[lorenz_96](models/lorenz_63/model_mod.html) model.










	
	lorenz_84
	
	DART interface documentation for the
[lorenz_84](models/lorenz_84/model_mod.html) model.










	
	lorenz_96
	
	DART interface documentation for the
[lorenz_96](models/lorenz_96/model_mod.html) model.










	
	lorenz_04
	
	DART interface documentation for the
[lorenz_04](models/lorenz_04/model_mod.html) model.










	
	mpas_atm (netCDF overwrite not supported for update_u_from_reconstruct = .true. )
	
	DART interface documentation for the
[MPAS atmosphere](models/mpas_atm/model_mod.html) model.


	Documentation for the
[MPAS model](https://mpas-dev.github.io/atmosphere/atmosphere.html).










	
	POP
	
	DART interface documentation for the
[POP](models/POP/model_mod.html) global ocean model.


	Documentation for the
[POP model](http://www.cesm.ucar.edu/models/ccsm2.0/pop/).










	
	ROMS (NEW)
	
	DART interface documentation for the
[ROMS](models/ROMS/model_mod.html) regional ocean model.


	Documentation for the [ROMS model](https://www.myroms.org/).










	
	simple_advection
	
	DART interface documentation for the
[simple advection](models/simple_advection/model_mod.html) model.










	
	wrf
	
	DART interface documentation for the
[WRF](models/wrf/model_mod.html) regional forecast model.


	Documentation for the [WRF
model](http://www.wrf-model.org/index.php).















The DART/models/template directory contains sample files for adding a
new model. See the
[Adding a Model](Models.html#adding_a_model)
section of the DART web pages for more help on adding a new model.
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## Changed Models



	
	WRF
	
	Allow advanced microphysics schemes (needed interpolation for 7
new kinds)


	Interpolation in the vertical is now done in log(p) instead of
linear pressure space. log(p) is the default, but a compile-time
variable can restore the linear interpolation.


	Added support in the namelist to avoid writing updated fields
back into the wrf netCDF files. The fields are still updated
during the assimilation but the updated data is not written back
to the wrfinput file during the dart_to_wrf step.


	Fixed an obscure bug in the vertical convert routine of the wrf
model_mod that would occasionally fail to convert an obs. This
would make tiny differences in the output as the number of mpi
tasks change. No quantitative differences in the results but
they were not bitwise compatible before and they are again now.










	
	CAM
	
	DART/CAM now runs under the CESM framework, so all options
available with the framework can be used.


	Support for the SE core (HOMME) has been developed but is NOT
part of this release. Please contact the [DART Development
Group](mailto:dart@ucar.edu) if you have an interest in this
configuration of CAM.










	
	Simple Advection Model
	
	Fixed a bug where the random number generator was being used
before being called with an initial seed.
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## New Observation Types/Forward Operators



	Many new observation types related to land and atmospheric chemistry
have been added. See the
[obs_kind_mod.f90](../../assimilation_code/modules/observations/DEFAULT_obs_kind_mod.F90)
for a list of the generic quantities now available.


	New forward operator for Sea Ice (cice) ice thickness observations.
See the
[obs_def_cice_mod.f90](../../observations/forward_operators/obs_def_cice_mod.f90)
file for details.


	New forward operator for Carbon Monoxide (CO) Nadir observations.
See the
[obs_def_CO_Nadir_mod.f90](../../observations/forward_operators/obs_def_CO_Nadir_mod.f90)
file for details.


	New forward operator for Total Cloud Water in a column observations.
See the
[obs_def_cwp_mod.f90](../../observations/forward_operators/obs_def_cwp_mod.f90)
file for details.
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## New Observation Types/Sources



	AVISO
Added an observation converter for Sea Surface Height Anomaly
observations. Documentation in
[convert_aviso.f90](../../observations/obs_converters/AVISO/convert_aviso.f90)
(source).


	cice
Added an obs_sequence converter for Sea Ice observations.
Documentation in
[cice_to_obs.html](../../observations/obs_converters/cice/cice_to_obs.html).


	GPSPW
Added an obs_sequence converter for GPS precipitable water
observations. Documentation in
[convert_gpspw.f90](../../observations/obs_converters/GPSPW/convert_gpspw.f90)
(source).


	MODIS
Added an obs_sequence converter for MODIS FPAR (Fraction of
Photosynthetically Active Radiation) and LAI (Leaf Area Index)
obseverations. Documentation in
[MOD15A2_to_obs.html](../../observations/obs_converters/MODIS/MOD15A2_to_obs.html).


	ok_mesonet
Added an obs_sequence converter for the Oklahoma Mesonet
observations. Documentation in
[ok_mesonet.html](../../observations/obs_converters/ok_mesonet/ok_mesonet.html).


	ROMS
Added an obs_sequence converter for ROMS ocean data. This converter
includes externally computed forward operators output from the ROMS
model using FGAT (First Guess At Time) during the model run.
Documentation in
[convert_roms_obs.f90](../../observations/obs_converters/ROMS/convert_roms_obs.f90)
(source).


	SSUSI
Added an obs_sequence converter for wind profiler observations.
Documentation in
[convert_f16_edr_dsk.html](../../observations/obs_converters/SSUSI/convert_f16_edr_dsk.html).


	tropical_cyclone
Added an obs_sequence converter for ASCII format tropical cyclone
track observations. Documentation in
[tc_to_obs.html](../../observations/obs_converters/tropical_cyclone/tc_to_obs.html).
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## New Diagnostics and Documentation

Better Web Pages. We’ve put a lot of effort into expanding our
documentation. For example, please check out
[the MATLAB diagnostics section](Diagnostics.html#mat_obs)
or the pages outlining the
[observation sequence file contents](Observations.html#obs_seq_overview).



	The MATLAB® diagnostic routines have been updated to remove the
dependency on third-party toolboxes. These routines use the built-in
netCDF support that comes with basic MATLAB® (no other toolboxes needed).


	The MATLAB® routines have been updated to work consistently across
many MATLAB® versions (which is no small trick considering how many non-backward-compatible
changes they have made!).







But there’s always more to add.
Please use the GitHub Wiki or Issues facilities to let us know where we are lacking or what doesn’t work.
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## New Utilities

This section describes updates and changes to the tutorial materials,
scripting, setup, and build information since the Lanai release.



	obs_impact_tool please refer to
[Website](https://www.image.ucar.edu/DAReS/DART/Manhattan/assimilation_code/programs/obs_impact_tool/obs_impact_tool.html)
or
[local file](../../assimilation_code/programs/obs_impact_tool/obs_impact_tool.html)


	gen_sampling_error_table now computes sampling error correction
tables for any ensemble size.


	compute_error
[Website](https://www.image.ucar.edu/DAReS/DART/Manhattan/assimilation_code/programs/compute_error/compute_error.html)
or
[local file](../../assimilation_code/programs/compute_error/compute_error.html)
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## Known Problems



	There are many changes in this release and more updates are expected
to come soon. We are not aware of any obvious bugs, but if you
encounter any unexpected behavior please contact us. Please watch
the dart-users email list for announcements of updates to the
release code, and be prepared to issue a GitHub Pull Request from
the DART repository to your fork, or a git ‘fetch’ from the DART repository
to get updated files.
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## Support

Please send email to [dart@ucar.edu](mailto:dart@ucar.edu) rather than individuals.
It is the best way to ensure a timely response and sometimes generates productive
discussion among our group that leads to a better response.

GitHub also provides a [wiki](https://github.com/NCAR/DART/wiki) that
we will be using to add examples and appropriate content.

Lastly, GitHub also provides a [bug-reporting](https://github.com/NCAR/DART/issues)
facility.

### links


	[GitHub workflow](https://guides.github.com/introduction/flow/)




### Svn to Git

We will populate this with advice on how to migrate the changes from your local svn version of DART to
the equivalent git version. From there, you can choose to merge to a more current branch or tag.
Stay Tuned!
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